

Maxicode Encoder
Version 2.1.3

Programmer’s Manual

Silver Bay Software LLC
100 Adams Street

Dunstable, MA 01827
Phone: (800) 364-2889

Fax: (888) 315-9608
support@silverbaysoftware.com

Document Version 20091005

The information in this manual is subject to change without notice and should not be construed
as a commitment by Silver Bay Software LLC. Silver Bay Software assumes no responsibility
for any errors that might appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

Products or brand names used herein are trademarks or registered trademarks of their respective
companies

Copyright © 2009, Silver Bay Software LLC.
All rights reserved.

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Updating from a Previous Version of the Encoder
If you are updating from a Version 2.0.x encoder to the Version 2.1.x encoder, you need to make
the corresponding changes in your input structures. The specific changes are:

 The MODE-CONTROL element has been added to the COBOL input structure.

 The modeControl element has been added to the C input structure.

 The modeControl element has been added to the Visual Basic structure.

 - i -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Table of Contents
1 INTRODUCTION..1

1.1 CONTENTS OF THIS MANUAL...1
1.2 MAXICODE SYMBOLOGY OVERVIEW ..1
1.3 ENCODER OPERATION ...2

1.3.1 Data Inputs ..3
1.3.2 Encoder Output..3

1.4 STEPS TO USING THE ENCODER ...5
1.5 API’S PROVIDED ...6
1.6 CHARACTER SET ISSUES..6

2 MAXICODE SYMBOLOGY TECHNICAL DETAILS ..7

2.1 PHYSICAL STRUCTURE ..7
2.2 HISTORICAL OVERVIEW ..8
2.3 INTERNAL ENCODING DETAILS ...8
2.4 MAXICODE ENCODING MODES..10
2.5 MAXICODE IN UNITED PARCEL SERVICE (UPS) APPLICATIONS ..11

2.5.1 Structured Carrier Message Format ...11
2.5.2 Primary and Secondary Message Formats..13
2.5.3 Compressed Maxicode Format ..14

3 USING THE ENCODER FOR UPS APPLICATIONS..16

3.1 COBOL LANGUAGE API ..16
3.1.1 Initializing the Encoder: MAXINIT ...16
3.1.2 Calling the Encoder: MAXUPSN...17

3.2 C LANGUAGE API ...22
3.2.1 Initializing the Encoder: MaxInitC..22
3.2.2 Calling the Encoder: MaxUpsNC..23

3.3 VISUAL BASIC API..27

4 GENERIC MAXICODE API’S ..32

4.1 COBOL LANGUAGE API ..32
4.1.1 Initialization...32
4.1.2 Result Codes ..33
4.1.3 Record Formats ...34
4.1.4 Encoding Structured Carrier Message Symbols ..37
4.1.5 Encoding Generic Message (Non-Structured Carrier Message) Data ..45

4.2 C LANGUAGE API ...47
4.2.1 Initialization...47
4.2.2 Result Codes ..48
4.2.3 Data Structures..49
4.2.4 Encoding Structured Carrier Message Symbols ..53
4.2.5 Encoding Generic Message (Non-Structured Carrier Message) Data ..60

4.3 VISUAL BASIC LANGUAGE API...61
4.3.1 Initialization...61
4.3.2 Result Codes ..63
4.3.3 Data Structures..64
4.3.4 Encoding Structured Carrier Message Symbols ..68

5 PRINTING THE MAXICODE SYMBOL...71

5.1 THE MAXICODE FONT ...71
5.2 VERTICAL SPACING...72
5.3 USING HEWLETT-PACKARD PCL FONTS ...72

 - ii -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

 - iii -

5.3.1 Overview..72
5.3.2 C Language Example...74

5.4 USING AFP PAGEDEFS ...75
5.5 XEROX PRINTING ..76
5.6 USING AS/400 DDS..76

6 APPENDIX...78

6.1 STRUCTURED MESSAGE APPEND...78
6.2 FONT INITIALIZATION VALUES..79

Maxicode Encoder
Version 2.1.3

Programmer’s Manual

1 Introduction

1.1 Contents of this Manual
This manual is broken into three sections:

 an introduction, ,

 a programmer’s reference, and

 a printing guide.

The introduction provides a quick overview of the Maxicode symbol and a general discussion on
how to program with the Silver Bay Software LLC Maxicode encoder. The programmer’s
reference section provides the specific details of the API’s for each of the supported
programming languages. Finally, the printing section provides guidelines for formatting the
output of the encoder in a variety of print environments, including AFP, Metacode, and HP-PCL.

1.2 Maxicode Symbology Overview
Maxicode is a medium capacity, two-dimensional barcode symbology especially designed for the
high-speed scanning application of package sorting and tracking. UPS introduced Maxicode in
1992 after underlying development dating from the late 1980s. In 1996, AIM USA standardized
Maxicode in its “Uniform Symbology Specification – Maxicode.”

Maxicode symbols have the following general characteristics:

 A two-dimensional array of hexagons surrounding a central, circular bull’s-eye.
 A fixed symbol size, both graphically (always about 1” square) and in total data capacity

(up to about 100 characters).
 The data content is broken into two “messages”; the Primary Message which contains the

postal code, country code, and class of service, and the Secondary Message which
contains other, supplemental information like tracking number, package weight, and
shipping address.

 - 1 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Figure 1 - Sample Maxicode Symbol

The fixed symbol size and circular bull’s-eye are critical to high-speed scanning. The bull’s-eye
pattern is used as a “finder,” allowing the symbol to be easily located regardless of the symbol's
orientation relative to the scanner. The scale of the symbol and its hexagons are also well
matched to the scanning resolution available in over-the-belt scanners. A sample Maxicode
symbol is shown above in Figure 1.

The separation of the data into primary and secondary message components allows the sorting
information stored in the primary message component to be recovered even in situations in
which the secondary message is damaged beyond readability.

When a Maxicode symbol contains sorting information, the decoded message is in a format
known as a Structured Carrier Message (SCM). The specific format of the SCM is discussed in
detail in a later section.

Although primarily intended for use in package sorting environments, Maxicode can also be used
as a general-purpose symbology. Thus, its use is not limited to the encoding of Structured
Carrier Messages – any stream of data may be encoded in a set of Maxicode symbols. The
Silver Bay Software Maxicode Encoder provides API’s that allow such general purpose use in
addition to API’s specifically designed for sorting applications.

1.3 Encoder Operation
The process of converting textual data to a two-dimensional barcode is called encoding. This
sophisticated process involves data validation, data compaction, and the insertion of error-
correction information. When this document refers to the encoder, it is referring to the Silver
Bay Software Maxicode library. While the process of encoding the shipping information is quite
complex, we have developed a simple-to-use set of functions for generating Maxicode symbols.

The Silver Bay Software LLC Maxicode encoder is designed to be compatible with as many
printing environments as possible. Since printing technologies, processes, and systems vary
widely from computer system to computer system, the encoder does not directly print the
symbol. Instead, the encoder returns a sequence of characters to the calling program. These
characters correspond to specially designed code points in a custom font provided with the
encoder. When the returned characters are rendered (i.e., printed) in this font, the result is a
Maxicode symbol. It is the responsibility of the application programmer to generate the
appropriate print stream data to invoke the font on the printer and to send the characters returned
by the encoder to the printer. This is discussed in more detail in a later section.

 - 2 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

1.3.1 Data Inputs

In the most commonly-used API, the input into the encoder function is a simple data record. The
table below briefly describes each of the elements of this input record. A more detailed
discussion is provided in each of the language-specific sections of this manual.

Record Element Size Description Required?

Postal Code 9 Ship To Postal Code Yes

Country Code 3 Ship To ISO Country Code Yes

Class of Service 3 Class of Service Yes

Tracking Number 10 UPS Tracking Number Yes

Shipper Number 6 UPS Shipper Number Yes

Julian Day of Pickup 3 Julian day of the year the package was picked-up Yes

Shipment ID Number 30 Customer Assigned reference number No

Package Number 3 The X in Package X of N Yes

Number in Shipment 3 The N in Package X of N Yes

Weight 3 Package weight, rounded up to the next pound Yes

Address Validation 1 Address validation flag (Y or N) Yes

Address 35 Ship To Address No

City 20 Ship To City Yes

State 2 Ship To State Yes

Mode Control 1 Encoding mode control Yes

As mentioned earlier, there is space in a Maxicode symbol for about 100 characters of
information. The fields that UPS designates as required (all of them except Shipment ID
Number and Address) will use most of these characters. When using the encoder, if you attempt
to supply optional data (e.g. Shipment ID Number and/or Address), you may very well exceed
the capacity of a Maxicode symbol. Thus, providing any of the optional data elements presents a
real problem: the symbol is not capable of storing that much data. If the Maxicode encoder is
passed more data than it can encode it will return an error, and no symbol will be generated.

For this reason, it is highly recommended that you leave the optional fields blank. Most of these
fields have been added for future use when two Maxicode symbols will be used to store all of the
information. A separate set of API functions has been developed to handle multiple Maxicode
symbols; however, they are not discussed in this document.

1.3.2 Encoder Output

Due to the wide variety of printer connection methods and character translation devices in use in
today's print centers, characters output by a program may not be the same characters which
eventually arrive at the printer. A common example is a Xerox printer in an IBM mainframe
environment. Natively, a Xerox printer is an ASCII device while IBM mainframes are EBCDIC.
Somewhere along the way, the data sent from an application program to the printer will be
converted from EBCDIC to ASCII. This can occur at the application program, via a converter

 - 3 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

box, or even at the printer itself. For example, if an EBCDIC machines prints a ‘zero’ character,
hexadecimal value F0, this will be converted to the ASCII equivalent, hexadecimal value 30,
before it is printed on the Xerox printer.

Xerox
Printer

Computer Converter
EBCDIC

ASCII

Figure 2 - Schematic of Printing System

The custom Maxicode font provided with the encoder has its code points (or characters) located
as specific hexadecimal values. This font consists of characters representing hexagons and
spaces, as well as a character that prints the bull’s-eye at the center of the symbol. When your
application program sends the encoder’s output characters to the printer, they may or may not be
translated on the way to the printer. The important thing is that when they arrive at the printer
they must match the font's code points. Rather than attempt to code for all possible translation
scenarios in the encoder, we have instead provided a function which allows the calling program
to specify which output characters to use. A table has been provided at the end of this guide that
lists the most common printer configurations and the corresponding values that must be supplied
to this initialization function. The exact use of this function is discussed in the language specific
sections of the encoder.

The actual output of the encoder is a two-dimensional array of characters. This array is 17 lines
long with each line containing 30 characters. The following is an example of what this output
may look like if printed with just a normal font (i.e., not using the custom font):

230303230331222231233222212222
331220321012103131311331133320
103223110030320012023121302010
222232322231222232313122132222
111230121331012200212131333030
013212320222000001013300013232
222222310000000000121202201012
120120230000000000021100222032
110020103500000000003023331130
303110011100000000101030021120
002012320020000000020110003020
222132110031322003111001301210
313310020202020202020100330130
130310213121202130311302121100
233332300112003211113112130220
111031202110230033010231310310
202002202020022020000020200200

Figure 3 - Sample Encoder Output, Printed with Standard Font

However, when these same characters are printed using the custom Maxicode font, rather than
0's, 1's, 2's, 3's, and 5's (there's only one 5 characters; it will be the bullseye), you will instead get
a Maxicode symbol:

 - 4 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Note: Not drawn to scale

Figure 4 - Sample Encoder Output, Printed with Custom Font

1.4 Steps to Using the Encoder
Based on all of the above, the generalized procedure for using the encoder is as follows:

1. Based on the type of printer being used, and the method via which it is connected to the
computer, make the custom Maxicode font available to the printer.

2. If necessary, call the encoder initialization function with the correct character values.
The values you use are based on your specific printing configuration. In most cases, this
step is optional.

3. For each Maxicode symbol to be printed:

a. Place the data to be encoded into one of the structure or record formats supported by
the API functions.

b. Call the appropriate encoder API.

c. Check the return code to ensure that the encode operation succeeded.

d. Send the appropriate command to invoke the Maxicode font on your printer.

e. Send the characters returned by the encoder to the printer.

f. Return the printer to the “normal” font.

A number of sample programs have been provided with the distribution media as well,
demonstrating the use of the Maxicode encoder.

 - 5 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

1.5 API’s Provided
The Maxicode encoder provides several API’s for generating Maxicode symbols. Each of these
API’s is described briefly in the table below.

API Description

UPS Structure This is the easiest and most commonly used API. It is intended for environments where only
standard UPS Maxicode symbols are needed. All of the required and optional information is
passed to the encoder in a single record structure. The encoder takes care of all formatting and
data validation.

NOTE: This API does not support Structured Message Append.

SCM String This API accepts a properly formatted Structured Carrier Message string. The format of a SCM
string is discussed in detail in a later section.

NOTE: This API does not support Structured Message Append.

SCM Structure This API accepts Structured Carrier Message information split into primary message fields and
a properly formatted Secondary Message string. The format of a Secondary Message string is
discussed in detail in a later section.

This API supports Structured Message Append.

SEC Buffer This API is used to encode general-purpose (non-SCM) information using Standard Error
Correction. The information to be encoded is passed to the encoder as an array of bytes.

This API supports Structured Message Append.

EEC Buffer This API is used to encode general-purpose (non-SCM) information using Extended Error
Correction. The information to be encoded is passed to the encoder as an array of bytes.

This API supports Structured Message Append.

1.6 Character Set Issues
The Maxicode symbology stores its internal information using the ASCII character set. While
the ASCII character set is common on microcomputers and minicomputers, the EBCDIC
character set is more common on IBM mid-range and mainframe systems. On EBCDIC systems,
input data must be converted from EBCDIC to ASCII before it is encoded into the symbol.

The encoder library provides facilities to handle EBCDIC-to-ASCII conversions automatically,
or to allow the user application to perform the conversion before passing the data to the encoder.
This is done by having two versions of most of the API functions-–one which assumes that the
data has already been converted to ASCII, and one that assumes it is still in the computer’s
“native” (EBCDIC or ASCII) character set. On EBCDIC machines, the “native” character set
functions automatically perform an EBCDIC-to-ASCII conversion on all textual data as part of
the encoding process. On ASCII machines, the “native” functions assume the data is already in
ASCII and perform no conversion.

 - 6 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

2 Maxicode Symbology Technical Details
This section of the document is intended for users who want or need more information on the
internal details of a Maxicode symbol. The encoder provides a set of functions for UPS-specific
applications that handle all these internal details for you. If you are using these functions, you do
not need to read this section. If, on the other hand, you need more control over the symbols
generated, and thus need to use some of the other interface functions, you will need the
information which follows.

Note that the definitive reference for technical details of the Maxicode symbology is the AIM
USA Technical Specification – Uniform Symbology Specification – Maxicode. This specification
is available through

AIM USA
634 Alpha Drive
Pittsburgh, PA 15238 USA
Phone: (412) 963-8588
E-mail: tech @ aimusa.org
Web: http://www.aimusa.org

2.1 Physical Structure
In a single Maxicode symbol, a total of 886 hexagons are arranged around the bull’s-eye finder
in a hexagonal grid 33 rows high. These hexagons are referred to as “modules.” Odd-numbered
rows of the symbol contain 30 modules, while even-numbered rows contain 29 modules, offset
by a half module to form a hexagonal array. Of these 886 hexagons, the 2 in the upper-right
corner are always black, 18 located around the bull’s-eye are used to help determine the
orientation of the symbol, and the remaining 864 encode data at one bit per hexagon. Black
modules encode a binary “1” and white modules (those left unprinted) encode a binary “0”. The
864 data modules are grouped into 144 6-bit symbol characters, also referred to as “codewords.”
Some of these codewords are used to represent encoded data, while others are error correction
codewords. The error correction codewords are included in the symbol to compensate for the
fact that barcodes are frequently damaged during handling. Through a mathematical technique
known as Reed-Solomon Error Correction, the barcode scanner uses this extra information to
reconstruct missing or damaged portions of the Maxicode symbol so that the encoded data can be
recovered. The precise number of data codewords versus error correction codewords in a
symbol depends on the symbol’s “mode.” This will be covered shortly.

Characters are encoded into the barcode using a sequence of codeword values. A Maxicode
symbol can encode any 8-bit value into the body of the symbol. This includes all the ASCII
characters, as well as non-printable binary values. Each 6-bit codeword in the symbol encodes
either a specific character, or a control character that changes how subsequent codewords are
interpreted. This allows the encoding of 8-bit values into a stream of 6-bit codewords.

Because of the fixed size of a Maxicode symbol, there is a fixed upper limit to the number of
characters that can be encoded in a single symbol. This value ranges from 60-144 characters,
depending on the symbol mode, and the precise character sequence. Character sequences

 - 7 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

consisting of similar characters (e.g. all upper case alphas and digits) require fewer control
codewords, and thus allow more characters to be encoded in a symbol.

2.2 Historical Overview
Figure 5 shows two representative Maxicode symbols, one on the left as it looked when initially
introduced to the public and one on the right as it looks today. During the process of
standardization through the AIM USA Technical Symbology Committee (TSC), a number of
modifications were made to the preferred Maxicode implementation. These changes were made
to improve the readability of the symbology, and to improve its tolerance for damage to the
printed image. The changes introduced in the AIM USS are backward compatible, allowing
readers to work with either symbol type, and to auto-discriminate between them.

(circa 1992) (circa 1996)

Figure 5 - Representative Maxicode symbols

Important changes in the newer USS-Maxicode specification include:

 Shrinking the size of the dark data "modules" so they no longer touch their neighbors.

 Changes in the layout of the secondary message and the way its error correction is
performed.

 Expanded encoding capabilities to allow any 8-bit value to be encoded as part of the
message.

 A multi-symbol “Structured Message Append” capability, allowing a message that will
not fit in a single symbol to be continued in one or more additional symbols.

Although many Maxicode systems and printers in use today follow the original specification,
new printing equipment and installations should adhere to the more robust and flexible symbol
design of USS-Maxicode. As such, the Silver Bay Software Maxicode encoder only supports the
generation of the newer format. The encoder supports all the features of the new specification.
In particular, Structured Message Append support is available, although this requires some extra
steps on the part of the programmer to achieve.

2.3 Internal Encoding Details
This section of the document provides a high-level overview of the internal structure of a
Maxicode symbol. Only the “new” format symbols are described herein. For information on
“old” format symbols, AIM USA also publishes a document entitled “Guideline on Mode 0 for
Maxicode.”

As mentioned earlier, a Maxicode symbol contains two message components: a primary message
component and a secondary message component. These two components are stored in different

 - 8 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

parts of the symbol, and each has error correction information added to it, allowing recovery of
the data even when the physical symbol is of poor quality or is damaged.

A Maxicode symbol’s primary message component encodes 60 bits of information, and serves
two special uses. First, it contains four bits that directly indicate the “mode” in which all the rest
of the symbol is encoded.

The modes that are currently defined are indicated in the following table:

Mode Use

0 Obsolete. Indicates an “old type” symbol containing a Structured Carrier Message. This mode has
been superceded by Modes 2 and 3.

1 Obsolete. Indicates an “old type” symbol containing general-purpose data. This mode has been
superceded by Mode 4.

2 Indicates the symbol contains a Structured Carrier Message with a numeric postal code.

3 Indicates the symbol contains a Structured Carrier Message with an alphanumeric postal code.

4 Indicates the symbol contains general-purpose data, protected by the standard error correction

5 Indicates the symbol contains general-purpose data, protected by enhanced error correction.

6 Reserved for symbols used to program internal parameters of Maxicode readers.

The use of a consistent mode numbering system across both “old” and “new” symbols allows
readers to determine what type of symbol is being scanned. The encoder supports Modes 2, 3, 4
and 5. Modes 0 and 1 are not supported because they are obsolete, while Mode 6 is only used by
manufacturers of barcode scanners.

For modes representing Structured Carrier Messages (modes 0, 2 and 3), the remaining 56 bits of
the primary message contains all the information needed for package sorting:

 The destination country code,

 The “ship-to” postal code (zip code), and

 The class of service.

This information normally requires up to 15 characters to represent, but is encoded using an
efficient binary compaction technique (different from the codeword system used to encode the
secondary message) to allow it to fit in 56 bits. Thus, in most cases, high-speed sorting systems
only need to decode the primary message in order to properly route a package. This represents a
considerable efficiency improvement in such applications. In the Structured Carrier Message
modes, the secondary message component contains additional information about the package
such as the tracking number, package weight, etc. that, while important, is not required for
package routing.

In the general-purpose data modes (modes 4 and 5), the primary message is still physically
separated from the secondary message in the symbol. For data content purposes, however, they
are simply considered two portions of a single data stream. In this case, 54 of the 56 bits of the
primary message are treated as nine 6-bit codewords, and the remaining 2 bits are unused. The
nine primary message codewords are combined with the secondary message codewords, and the
entire set is decoded as a unit.

 - 9 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Because of the importance of the primary message component to package sorting, the 60-bit
primary message is protected by 60 bits of error correction information. This allows recovery of
the primary message information even if up to 25% of the hexagons representing the primary
message are damaged. For Modes 2, 3 and 4, the secondary message consists of 504 data bits
(84 codewords) and 240 bits of error correction. For Mode 5, the amount of error correction in
the secondary message is increased to 336 bits, and the data portion reduced to 408 bits (68
codewords). This allows greater protection against damage, but at the cost of lower data content
per symbol.

Maxicode also includes a capability referred to as “Structured Message Append.” Using this
feature, a message that is too long to fit in a single symbol can be continued across one or more
additional symbols. Special coding at the beginning of the secondary message indicates whether
this is an “isolated” symbol or whether it is part of a Structured Message Append set. The
encoder supports the generation of symbols using this feature; however this requires the use of
the more advanced interface functions.

2.4 Maxicode Encoding Modes
The Maxicode symbology provides support for both numeric postal codes, such as are used in
the United States, and mixed alphanumeric postal codes, such as are used in Canada. Internally,
the symbology uses two different “modes” to represent these two different types of postal codes.
“Mode 2” is capable of encoding postal codes up to 9 digits in length, but is only capable of
encoding all-numeric postal codes. “Mode 3” is capable of encoding alphanumeric postal codes,
but will only encode up to 6 characters.

In versions of the encoder prior to Version 2.1.x, the encoder always internally determined the
mode to use. In order to adapt to changes in how different countries represent their postal codes,
and in how UPS would like to see different postal codes encoded, beginning in Version 2.1.1, the
encoder now provides a means via which the programmer can exercise control over the encoding
mode used.

The encoder now offers four options: the original AIM algorithm, a revised UPS algorithm,
Mode 2 only, and Mode 3 only. These are described below:

AIM Algorithm: This is the algorithm that is described in the AIM specification
for the Maxicode symbology. It uses Mode 2 for any all-
numeric postal code, regardless of the length, and uses Mode 3
for any postal code that contains one or more alphabetic
characters. Prior to version 2.1.x, this was the algorithm
implemented internally by the encoder. Thus, this mode
should be selected by users who are upgrading from an earlier
version of the encoder, unless the previous encoder was not
producing the desired results.

UPS Algorithm: This is a revised version of the auto-detection algorithm that
UPS seems to prefer. In this algorithm, only 5-digit or 9-digit
postal codes are encoded using Mode 2. Mode 3 is used for all
postal codes that contain one or more alphabetic characters, as
well as all-numeric postal codes that are not 5 or 9 digits in
length.

 - 10 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Mode 2 only: This forces the encoder to try to use Mode 2 to encode the
postal code. If the postal code contains alphabetic characters
and “Mode 2 only” is selected, the encoder will return an error.

Mode 3 only: This forces the encoder to use Mode 3 to encode the postal
code.

The encoder always accepts postal codes up to nine characters in length. If the encoder is
instructed to use Mode 3, or chooses Mode 3 as a result of one of the auto-detecting algorithms,
the postal code will be automatically truncated to a maximum of 6 characters. As a result,
“Mode 3 only” should never be used to encode symbols for United States destinations, because
this will cause the 9-digit postal code to be truncated to 6 digits.

2.5 Maxicode in United Parcel Service (UPS) Applications
UPS has specific requirements of their customers for the content of Maxicode symbols. This
section of the document summarizes these requirements, as well as how the information is
encoded into the primary and secondary message portions of a Maxicode symbol. For more
information on message content in UPS applications, consult Guide to Bar Coding with UPS, a
publication describing UPS’s bar coding standards and requirements. This document is available
through your local UPS Account Executive.

2.5.1 Structured Carrier Message Format

The message format that UPS uses in Maxicode symbols conform to the ANSI MH10.8M-1993
standard. ANSI MH10.8M-1993 is an American National Standard for barcodes on unit loads
and transport packages. This standard sets down guidelines on how package information can be
coded so that it can be consistently and reliably exchanged between organizations. This record
format is commonly referred to as a Structured Carrier Message.

The ANSI standard message format consists of a message header, message body, and message
terminator.

The message header consists of two parts:

 The four-character sequence [)>RS where RS represents the ASCII “Record Separator”
character. These characters identify the message as belonging to the ANSI standard.

 The five-character sequence 01GS96 where GS represents the ASCII “Group Separator”
character. This is the standard Transportation Data Format Header.

The message body consists of a list of data fields (discussed below) in a particular order. The GS
character is used to separate individual fields.

The message terminator consists of the two-character sequence RSEOT where RS indicates the
ASCII “Record Separator” character and EOT indicates the ASCII “End Of Transmission”
character.

 - 11 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

The hexadecimal values for all three special characters are as follows. Both the EBCDIC and
ASCII values have been provided:

Character EBCDIC Value ASCII Value
R

S 0x1E 0x1E
G

S 0x1D 0x1D
EOT 0x37 0x04

For UPS applications, the following data elements are mandatory:

Item Size and Type

Ship-To Postal Code 5 or 9 digits in the USA, up to 6 alphanumeric characters
in other countries.

Ship-To Country Code 3 digits (840 for USA)

Class of Service 3 digits

Tracking Number 10-character alphanumeric

UPS Standard Carrier Alpha Code “UPSN”

The following data elements are optional:

Item Size and Type

UPS Shipper Number 6-character alphanumeric

Julian Day of Pickup 3 digits

Shipment ID Number 1-30 character alphanumeric

Package In Shipment (package N of X total packages) 1-4 digits “/” 1-4 digits

Weight in pounds 1-5 digits

Address Validation “Y” or “N”

Ship-To Address 1-35 alphanumeric

Ship-To City 1-35 alphanumeric

Ship-To State 2-character alpha

NOTE: If all the information listed in these tables is provided for an individual package, it is
quite possible that the data will not fit into a single symbol. After encoding the message header,
mandatory information and the message terminator, a Maxicode symbol only has space for a
maximum of 53 characters of optional information. This includes the GS characters separating
the fields. As a result, a single symbol can hold only a maximum of 43 characters of optional
information.

A typical minimum data string, including only the mandatory elements, would be
[)>RS01

G
S97123456789

G
S840

G
S001

G
S1Z12345678

G
SUPSN

R
S
E
OT

while a full example might be
[)>RS01

G
S96123456789

G
S840

G
S001

G
S1Z12345678

G
SUPSN

G
S06X610

G
S159

G
S

 1234567GS1/2
G
S3.1

G
SY

G
S634 MAIN ST

G
SYORK

G
SPA

R
S
E
OT

 - 12 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

In these messages, the elements are:
Item Meaning

[)>RS01GS96 Standard prefix

123456789 Nine-digit Ship-To postal code

840 Three-digit Ship-To country code

001 Three-digit Class of Service

1Z12345678 Ten-character Tracking Number

UPSN Four-Character Standard Carrier Alpha Code for UPS

06X610 UPS Shipper Number

159 Julian Day of Pickup

1234567 Shipment ID Number

1/2 Package In Shipment (package 1 of 2 total packages)

3.1 Weight (3.1 pounds)

Y Address Validation

634 MAIN ST Ship-To Address

YORK Ship-To City

PA Ship-To State

Note that if a field is omitted, the GS character terminating the field must be preserved. Thus, in
the second example, if the Package In Shipment and Weight fields were omitted, the latter
portion of the message would be changed from

…1234567GS1/2
G
S3

G
SY

G
S634 MAIN ST

G
S…

to
…1234567GS

G
S
G
SY

G
S634 MAIN ST

G
S…

where the adjacent GS characters indicate the position of blank fields.

Again, note that the lengths defined earlier represent the maximum supported length of each
individual field. If all fields are filled to their maximum length, the resulting data stream will not
fit within a single symbol. The encoder library will return an error if the data passed to it will
not fit in a single symbol. Certain API functions of the encoder support the Structured Message
Append feature of Maxicode, which allows a long message to be split across two or more
symbols. This is covered later in the document.

2.5.2 Primary and Secondary Message Formats

The Maxicode encoder provides UPS-specific functions that eliminate the need to understand the
internal formatting of a Maxicode barcode for UPS use. These functions simply accept the
individual UPS mandatory and optional parameters and perform all the required formatting
internally. In certain specialized applications, however, these functions may not have all the
capability required. For example, in order to generate a set of Structured Message Append
symbols to represent a long message, the more powerful SCM functions, rather than the UPS-
specific functions, must be used. Use of these functions requires an understanding of how a

 - 13 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

message is broken down into primary and secondary message components, since the SCM
functions require the programmer to “manually” format the secondary message component.

UPS Maxicode barcodes are Structured Carrier Messages (SCM), and as such, use either Mode 2
or Mode 3 symbols. Mode 2 applies when the Ship-To Postal Code is all numeric, as it is in the
USA. Mode 3 is reserved for international applications in which the Ship-To Postal Code is
alphanumeric (e.g. Canada). In either type of symbol, the Ship-To Postal Code, the Country
Code and the Service Class are encoded in the primary message component of the barcode, while
the remaining elements are encoded in the secondary message component. This requires that the
SCM message header ([)>RS01GS96) and the remaining elements that appear after the primary
message, be grouped together into the secondary message.

The specific rules for formatting the secondary message from a Structured Carrier Message are:

1. The first nine data characters [)>RS01GS96 are extracted to be encoded in the secondary
message.

2. The next three data elements, representing respectively the postal code, country code, and
service class and their separators (GS) are dropped from the data source (since these fields
are encoded in the primary message)

3. The remaining string of data is then encoded in the secondary message after the header
“[)>RS01GS96”.

If we return to the message example given earlier:
 [)>RS01

G
S96123456789G

S840G
S001G

S1Z12345678
G
SUPSN

R
S
E
OT

The Ship-To Postal Code (123456789), the Country Code (840), and the Class of Service
(001), shown underlined, are encoded in the primary message. These fields, along with their
terminating GS characters, are removed from the body of the message, and the remaining data

[)>RS01
G
S961Z12345678

G
SUPSN

R
S
E
OT

is encoded as the secondary message. In the second example given earlier,
[)>RS01

G
S96123456789G

S840G
S001G

S1Z12345678
G
SUPSN

G
S06X610

G
S159

G
S1234567

G
S
G
S3.1

G
SY

G
S634 MAIN

STGSYORK
G
SPA

R
S
E
OT

the encoded secondary message is
[)>RS01

G
S961Z12345678

G
SUPSN

G
S06X610

G
S159

G
S1234567

G
S
G
S3.1

G
SY

G
S634 MAIN ST

G
SYORK

G
SPA

R
S
EOT

Thus, an alternate expression of the encoding rule for the secondary message is to write out the
entire formatted Structured Carrier Message, then delete the postal code, country code, service
class and the corresponding three GS characters. The string that remains is placed in the
secondary message portion of the symbol.

2.5.3 Compressed Maxicode Format

In late 2001, UPS introduced a new “compressed” form of Maxicode. The goal of this new form
was to allow more information to be encoded within a single symbol. Prior to the introduction of
compression, a full address, including street address, department, etc. would typically result in
more data than a single Maxicode symbol could handle. By using some proprietary compression
techniques, UPS was able to squeeze this type of information into the symbol as well.

 - 14 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Because the compression algorithms are proprietary to UPS, the Silver Bay Software encoder
cannot directly generate a compressed Maxicode symbol. It is possible, however, to use the
UPS-provided DLL to perform the data compression operation, and then pass the compressed
data into the encoder to perform the remaining operations necessary to reduce the data to a
symbol. At present, this operation is only supported via the Microsoft Windows version of the
encoder.

 - 15 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

3 Using the Encoder for UPS Applications
The Maxicode encoder provides two sets of API’s. The simpler API is designed specifically for
use in UPS shipping applications, and is described in this chapter. A more sophisticated API is
also available for more complex application. This API is discussed in the following chapter.

3.1 COBOL Language API

3.1.1 Initializing the Encoder: MAXINIT

In some rare cases, it may be necessary to change the default characters the Maxicode encoder
generates. The most notable case is when printing from an EBCDIC system to a Xerox printer
using Metacode. By default, on an EBCDIC system (e.g., S/370 or AS/400), the Maxicode
encoder will generate EBCDIC characters. However, a Xerox printer is an ASCII device.
Therefore, when the application program is sending Metacode to the Xerox printer, it must first
convert its output to ASCII. While the application programmer could allow the encoder to
generate EBCDIC characters and then subsequently convert them to ASCII, this function allows
the application programmer to override the default characters generated by the encoder. Thus,
this would allow the encoder to directly generate the characters in ASCII.

Call syntax:
CALL "MAXINIT" USING MAXICODE-FONT-INFO-REC.

Parameters:
01 MAXICODE-FONT-INFO-REC.
 05 NO-HEX-CHAR PIC X.
 05 LO-HEX-CHAR PIC X.
 05 HI-HEX-CHAR PIC X.
 05 TWO-HEX-CHAR PIC X.
 05 PAD-CHAR PIC X.
 05 BULL-CHAR PIC X.

Notes:

 This function does not need to be called before every symbol encoded. It only needs to
be called once as part of program initialization.

 If this function is not called, the encoder will still operate, using default values (the
characters '0' through '5'). In most cases, these default values will be correct.

 Note the use of double quotes in the CALL statement around the procedure name. Some
platforms may require single quotes.

 If you are using the encoder as an AS/400 ILE service program, remember to include
LINKAGE TYPE IS PROCEDURE in the call statement.

 - 16 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Example:
 WORKING STORAGE SECTION.
 …

* Values for Xerox printer, programs sends METACODE;
* thus we need encoder to generate ASCII values and
* not EBCDIC.

 01 MAXICODE-FONT-INFO-REC.
 05 NO-HEX-CHAR PIC X VALUE X'30'.
 05 LO-HEX-CHAR PIC X VALUE X'31'.
 05 HI-HEX-CHAR PIC X VALUE X'32'.
 05 TWO-HEX-CHAR PIC X VALUE X'33'.
 05 PAD-CHAR PIC X VALUE X'34'.
 05 BULL-CHAR PIC X VALUE X'35'.

 PROCEDURE DIVISION.

 0000-INITIALIZATION.
 . . .
 CALL "MAXINIT" USING MAXICODE-FONT-INFO-REC.

3.1.2 Calling the Encoder: MAXUPSN

The actual message encoded in a Maxicode symbol conforms to a format known as a Structured
Carrier Message. This format is very similar to an EDI record, using special headers, trailers,
field separators, and variable length fields. Rather than require you to code to this arcane format,
the Maxicode encoder library provides a much higher level API.

The COBOL API procedure for encoding a UPS symbol is MAXUPSN. The procedure takes
two parameters; an input record and an output record. The structure of these records must match
the definitions shown in the Parameters section below.

Call Statement:
CALL "MAXUPSN" USING MAXICODE-INPUT-REC
 MAXICODE-OUTPUT-REC.

Parameters:
01 MAXICODE-INPUT-REC.
 05 POSTAL-CODE PIC X(9).
 05 COUNTRY-CODE PIC 9(3).
 05 SERVICE-CLASS PIC 9(3).
 05 TRACKING-NUMBER PIC x(10).
 05 SHIPPER-NUMBER PIC X(6).
 05 JULIAN-DAY-OF-PICKUP PIC 9(3).
 05 SHIPMENT-ID PIC X(30) VALUE SPACES.
 05 PACKAGE-NUMBER PIC 9(4).
 05 PACKAGE-COUNT PIC 9(4).
 05 PACKAGE-WEIGHT PIC 9(5).
 05 ADDRESS-VALIDATION PIC X(1).
 05 SHIP-TO-ADDRESS PIC X(35) VALUE SPACES.
 05 SHIP-TO-CITY PIC X(20).
 05 FILLER PIC X(15) VALUE SPACES.
 05 SHIP-TO-STATE PIC X(2).
 05 MODE-CONTROL PIC X(1)

01 MAXICODE-OUTPUT-REC.
 05 OUTPUT-LINES PIC X(30) OCCURS 17.
 05 RESULT-CODE PIC 9(3).

 - 17 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

All fields in the input record (MAXICODE-UPS-INPUT-REC) must contain either a valid value
or be initialized to spaces (for character fields) or zeros (for numeric fields). The following table
discusses each data element in detail:

Element Max Len Contents

POSTAL-CODE 9 Required: the destination zip code/postal code. This field
must contain one of the following:

A 9 digit numeric, US Zip Code

A 1-6 digit alphanumeric, International Postal Code (letters
must be upper case), padded with spaces (to 9 characters).

If COUNTRY-CODE is 840 (USA), this field must contain a
9-digit US Zip code. If the last 4 digits of the zip code are not
known, use zeros.

COUNTRY-CODE 3 Required: the destination country code (USA = 840). A valid
country code between 000 and 999 must be specified.

SERVICE-CODE 3 Required: the UPS class of service for the package. Valid
service codes include:

 NEXT DAY AIR 001

 2ND DAY AIR 002

 3 DAY SELECT 012

 GROUNDTRAC 003

 DELIVERYTRAC II 005

 DELIVERYTRAC 008

Consult your UPS documentation for more information and a
complete list of service codes.

TRACKING-NUMBER 10 Required: the UPS Tracking Number (composed of the two-
character data identifier, seven-digit reference number, and one
digit check digit).

SHIPPER-NUMBER 6 Required: your UPS-assigned Shipper Number.

JULIAN-DAY-OF-PICKUP 3 Required: the numeric day of the year in which the package
was picked up (Jan 1 = 001, Jan 31 = 031, Feb 1 = 032, Feb 28
= 057, etc.).

If not known, this field must be filled with zeros.

SHIPMENT-ID 30 Optional: the shipper-assigned identification number for the
shipment. If the value is less than 30 characters long, pad with
spaces.

If not specified, this field must be filled with spaces.

It is highly recommended that this field always be left blank;
otherwise, the message may be too long to encode.

PACKAGE-NUMBER 4 Required: the “N” in “Package N of X”

This field is 4 digits long for backward compatibility with older
versions of the encoder. The valid range is 0 through 999.

PACKAGE-COUNT 4 Required: the “X” in “Package N of X”

This field is 4 digits long for backward compatibility with older
versions of the encoder. The valid range is 0 through 999.

 - 18 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Element Max Len Contents

PACKAGE-WEIGHT 5 Required: the weight of the package in pounds. Weight
should be rounded up to the next pound.

If not known, this field must be filled with zeros.

This field is 5 digits long for backward compatibility with older
versions of the encoder. The valid range is 0 through 999.

ADDRESS-VALIDATION 1 Required: indicates that the address information provided
comes from a certified data source. Valid values are 'Y' or 'N'

SHIP-TO-ADDRESS 35 Optional: the destination street address. If the value is less
than 35 characters long, pad with spaces.

If not specified, this field must be filled with spaces.

It is highly recommended that this field always be left blank;
otherwise, the message may be too long to encode.

SHIP-TO-CITY 20 Required: the destination city. If the value is less than 20
characters long, pad with spaces.

FILLER 15 Required: reserved: value must be spaces.

SHIP-TO-STATE 2 Required: the destination state abbreviation.

MODE-CONTROL 1 Required: Encoder mode control

This field is new in the Version 2.1.x encoder. It has the
following defined values:

‘0’ Use the AIM-standard algorithm to automatically
determine the encoding mode.

‘1’ Use the alternate UPS algorithm to automatically
determine the encoding mode.

‘2’ Force the encoder to use Mode 2 to encode the
symbol.

‘3’ Force the encoder to use Mode 3 to encode the
symbol.

See the section entitled Maxicode Encoding Modes on page
10 for more details.

The output record (MAXICODE-OUTPUT-REC) has two fields; the output character table and a
result code:

Element Max Len Contents

OUTPUT-LINES 30 x 17 If the encoder can successfully encode the input data, this table will
contain the font characters which, when printed using the provided font,
will create the Maxicode symbol.

NOTE: on some platforms, it may be simpler to represent this data element
as 17 individual elements (like in an AS/400 DDS).

RESULT-CODE 3 The encoder returns its status in this field. If the encoder was successful,
000 is returned; otherwise an error code is returned (see next table).

 - 19 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

The following values are defined for the RESULT-CODE field:

Value Meaning

000 Success

001 An invalid parameter was passed. This typically indicates that a NULL pointer was passed to the
encoder. This error does not normally occur with COBOL programs.

002 The data passed will not fit in a single Maxicode symbol; too many of the optional fields have been
populated.

003 POSTAL-CODE is invalid. Possible causes include:

 POSTAL-CODE contains characters other than digits and upper-case alphabetic characters.

 COUNTRY-CODE is 840 and POSTAL-CODE is not a 5-digit or 9-digit Zip Code.

 MODE-CONTROL is set to ‘2’, and the postal code contains letters.

004 COUNTRY-CODE is invalid. This occurs if COUNTRY-CODE is not numeric.

005 SERVICE-CLASS is invalid. This occurs if SERVICE-CLASS is not numeric.

006 TRACKING-NUMBER is not 10 characters.

007 ADDRESS-VALIDATION is invalid. Valid values are 'Y', 'N', or space.

008 SHIP-TO-STATE is invalid. The field must be two characters in length or all blanks.

009 The PACKAGE-NUMBER and PACKAGE-COUNT fields are incorrect or inconsistent. Possible
causes include:

 One of the fields is zero and the other is not

 One or both of the fields are not numeric

 PACKAGE-NUMBER is greater than PACKAGE-COUNT

011 PACKAGE-WEIGHT is invalid. Possible causes include:

 The field is not numeric

 The field has not been formatted correctly (must be in the range of 0 through 999)

In addition to these values, a number of “internal” error codes are defined. All these errors have
a value of 100 or greater. Should you encounter an internal error code, please note the code and
contact Silver Bay Software technical support.

Notes:

 A Maxicode symbol can only hold about 100 characters; if you populate any of the
“optional” data elements of the input record, the encoder may not be able to generate a
symbol and will return a result code of 002.

 The degree to which the encoder API validates postal codes, country codes and service
classes is limited to ensuring that the data passed can be encoded into a Maxicode label
(i.e. is the correct length, and is of the correct type – digits or alphanumeric). The
encoder has no way to ensure that the actual data is valid.

 Be sure to always initialize the entire input record; failure to do so could result in
“garbage” characters being encoded, or even encoder errors (002, message too long to
encode for example).

 - 20 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

 Note the use of double quotes in the CALL statement around the procedure name. Some
platforms may require single quotes.

 If you are using the encoder as an AS/400 ILE service program, remember to include
LINKAGE TYPE IS PROCEDURE in the call statement (refer to the sample ILE
COBOL program).

Example:
WORKING STORAGE SECTION.
 …

 01 MAXICODE-INPUT-REC.
 05 POSTAL-CODE PIC X(9).
 05 COUNTRY-CODE PIC 9(3).
 05 SERVICE-CLASS PIC 9(3).
 05 TRACKING-NUMBER PIC X(10).
 05 SHIPPER-NUMBER PIC X(6).
 05 JULIAN-DAY-OF-PICKUP PIC 9(3).
 05 SHIPMENT-ID PIC X(30) VALUE SPACES.
 05 PACKAGE-NUMBER PIC 9(4).
 05 PACKAGE-COUNT PIC 9(4).
 05 PACKAGE-WEIGHT PIC 9(5).
 05 ADDRESS-VALIDATION PIC X(1).
 05 SHIP-TO-ADDRESS PIC X(35) VALUE SPACES.
 05 SHIP-TO-CITY PIC X(20).
 05 FILLER PIC X(15) VALUE SPACES.
 05 SHIP-TO-STATE PIC X(2).
 05 MODE-CONTROL PIC X(1) VALUE '0'

 01 MAXICODE-OUTPUT-REC.
 05 OUTPUT-LINES PIC X(30) OCCURS 17.
 05 RESULT-CODE PIC 9(3).
 …

 PROCEDURE DIVISION.

 1100-MAXICODE-ENCODER.
 …

* Make sure all fields are blank or zero
 INITIALIZE MAXICODE-INPUT-REC.

 - 21 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

* Populate required fields
 MOVE "841706672" TO POSTAL-CODE.
 MOVE 840 TO COUNTRY-CODE.
 MOVE 003 TO SERVICE-CLASS.
 MOVE "1Z12345675" TO TRACKING-NUMBER.
 MOVE "12345E" TO SHIPPER-NUMBER.
 MOVE 89 TO JULIAN-DAY-OF-PICKUP.
 MOVE 1 TO PACKAGE-NUMBER.
 MOVE 1 TO PACKAGE-COUNT.
 MOVE 10 TO PACKAGE-WEIGHT.
 MOVE "Y" TO ADDRESS-VALIDATION.
 MOVE "SALT LAKE CITY" TO SHIP-TO-CITY.
 MOVE "UT" TO SHIP-TO-STATE.

 CALL "MAXUPSN" USING MAXICODE-INPUT-REC
 MAXICODE-OUTPUT-REC.

3.2 C Language API

3.2.1 Initializing the Encoder: MaxInitC

In some rare cases, it may be necessary to change the default characters the Maxicode encoder
generates. The most notable case is when printing from an EBCDIC system to a Xerox printer
using Metacode. By default, on an EBCDIC system (e.g., S/370 or AS/400), the Maxicode
encoder will generate EBCDIC characters. However, a Xerox printer is an ASCII device.
Therefore, when the application program is sending Metacode to the Xerox printer, it must first
convert its output to ASCII. While the application programmer could allow the encoder to
generate EBCDIC characters and then subsequently convert them to ASCII, this function allows
the application programmer to override the default characters generated by the encoder. Thus,
this would allow the encoder to directly generate the characters in ASCII.

Prototype:
#include "maxiapi.h"

void MaxInitC(MAXIINITCPTR pCharSet);

Arguments:
pCharSet – pointer to an sMaxiFontInit structure (defined in maxiapi.h)

Notes:

 The include file maxiapi.h contains all of the type definitions and prototypes for the
encoder API functions.

 This function does not need to be called before every symbol encoded. It only needs to
be called once as part of program initialization.

 If this function is not called, the encoder will still operate, using default values (the
characters '0' through '5'). In most cases, these default values will be correct.

Example:

 - 22 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

void main(void)
{
 /* Values for Xerox printer, we're sending metacode */
 MAXINIT charSet = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35 };

 MaxInitC(&charSet);

 …
}

3.2.2 Calling the Encoder: MaxUpsNC

The actual message encoded in a Maxicode symbol conforms to a format known as a Structured
Carrier Message. This format is very similar to an EDI record, using special headers, trailers,
field separators, and variable length fields. Rather than require you to code to this arcane format,
the Maxicode encoder library provides a much higher level API.

The C API function for encoding a symbol is MaxUpsNC. The function takes two arguments; a
pointer to an input structure and a pointer to an output structure. The structure of these records
must match the definitions shown in the Arguments section.

Prototype:
#include "maxiapi.h"

void MaxUpsNC(MAXIUPSINFOCPTR pInput,
 MAXIFONTOUTPTR pOutput);

Arguments:
pInput – pointer to an sMaxicodeUpsInfo structure (defined in maxiapi.h)
pOutput – pointer to an sMaxicodeFontOutput structure (defined in maxiapi.h)

All fields in the input structure (pInput) must contain either a valid value or be initialized to an
empty string (for character fields) or zero (for numeric fields). An sMaxicodeUpsInfo
structure is defined as follows:

struct sMaxicodeUpsInfo
{
 unsigned long countryCode;
 unsigned long serviceClass;
 unsigned long julianDayOfPickup;
 unsigned long packageNumber;
 unsigned long packageCount;
 unsigned long packageWeight;
 char postalCode[12];
 char trackingNumber[12];
 char shipperNumber[8];
 char shipmentID[32];
 char shipToAddress[36];
 char shipToCity[36];
 char shipToState[4];
 char addressValidation;
 char modeControl;
 char pad[2];
};

 - 23 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Note that all of the character field widths have been adjusted so each element lands on a double
word (4 byte) boundary. This was done to ensure maximum portability; the extra bytes are
ignored by the encoder. Refer to the table below for the valid data length of each character field:

Element Max Len Contents

postalCode 9 Required: the destination zip code/postal code represented as a NUL
terminated string. This field must contain one of the following:

A 9 digit numeric, US Zip Code

A 1-6 digit alphanumeric, International Postal Code (letters must be
upper case).

If COUNTRY-CODE is 840 (USA), this field must contain a 9 digit
US Zip code. If the last 4 digits of the zip code are not known, use
zeros.

countryCode N/A Required: the destination country code (USA = 840). A valid
country code between 0 and 999 must be specified.

serviceCode N/A Required: the UPS class of service for the package. Valid service
codes include:

 NEXT DAY AIR 1

 2ND DAY AIR 2

 3 DAY SELECT 12

 GROUNDTRAC 3

 DELIVERYTRAC II 5

 DELIVERYTRAC 8

Consult your UPS documentation for more information.

trackingNumber 10 Required: the UPS Tracking Number (composed of the two-character
data identifier, seven-digit reference number, and one digit check
digit).

shipperNumber 6 Required: your UPS-assigned Shipper Number represented as a NUL
terminated string.

julianDayOfPickup N/A Required: the numeric day of the year in which the package was
picked up (Jan 1 = 1, Jan 31 = 31, Feb 1 = 32, Feb 28 = 57, etc.).
Value cannot exceed 366.

shipmentId 30 Optional: the shipper-assigned identification number for the shipment
represented as a NUL terminated string.

If not specified, this field must contain an empty string (the NUL
character).

It is highly recommended that this field always be left blank;
otherwise, the message may be too long to encode.

packageNumber N/A Required: the “N” in “Package N of X.” Value cannot exceed 999.

packageCount N/A Required: the “X” in “Package N of X.” Value cannot exceed 999.

packageWeight N/A Required: the weight of the package in 10ths of a pound (e.g., 2lbs =
20). Value cannot exceed 9999 (999 pounds). UPS requires that the
package weight be rounded up to next pound.

If not known, this field must be zero.

 - 24 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Element Max Len Contents

addressValidation 1 Required: indicates that the address information provided comes
from a certified data source. Valid values are 'Y' or 'N'

shipToAddress 35 Optional: the destination street address represented as a NUL
terminated string.

If not specified, this field must contain an empty string (the NUL
character).

shipToCity 35 Required: the destination city represented as a NUL terminated
string.

NOTE: even though this field allows up to 35 characters, you must
truncate the city name to 20 characters maximum; otherwise your
Maxicode symbol may not encode.

It is highly recommended that this field always be left blank;
otherwise, the message may be too long to encode.

shipToState 2 Required: the destination state abbreviation represented as a NUL
terminated string..

modeControl 1 Required: Encoder mode control

This field is new in the Version 2.1.x encoder. It has the following
defined values:

‘0’ Use the AIM-standard algorithm to automatically determine
the encoding mode.

‘1’ Use the alternate UPS algorithm to automatically determine
the encoding mode.

‘2’ Force the encoder to use Mode 2 to encode the symbol.

‘3’ Force the encoder to use Mode 3 to encode the symbol.

See the section entitled Maxicode Encoding Modes on page 10 for
more details.

The output structure, sMaxicodeFontOutput, has two fields:

#define MAXICODE_ROW_PAIRS 17
#define MAXICODE_COLS 30

struct sMaxicodeFontOutput
{
 char output[MAXICODE_ROW_PAIRS][MAXICODE_COLS];
 MAXIERROR resultCode;
};

Element Max Len Contents

output 17 x 30 If the encoder can successfully encode the input data, this table will contain
the font characters which, when printed using the provided font, will create the
Maxicode symbol.

resultCode N/A The encoder returns its status in this field. If the encoder was successful,
MERR_OK is returned; otherwise an error code is returned (see next table).

 - 25 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

resultCode is an enumerated type, MAXIERROR, defined in maxidefs.h (this file is
automatically included by maxiapi.h). The table below lists the error values defined for
MAXIERROR:

Value Meaning

MERR_OK Success

MERR_INV_PARAM An invalid parameter was passed. This typically indicates that a NULL
pointer was passed to the encoder. It also indicates an invalid
julianDayOfPickup.

MERR_TOO_LONG The data passed will not fit in a single Maxicode symbol; too many of the
optional fields have been populated.

MERR_INV_POSTALCODE postalCode is invalid. Possible causes include:

 postalCode contains characters other than digits and upper-case
alphabetic characters.

 countryCode is 840 and postalCode is not a 9 digit Zip Code.

MERR_INV_COUNTRYCODE countryCode is invalid. This occurs if countryCode is greater than 999.

MERR_INV_SERVICECLASS serviceClass is invalid. This occurs if serviceClass is greater than 999.

MERR_INV_TRACKINGNUM trackingNumber is not 10 characters.

MERR_INV_ADDRVALIDATION addressValidation is invalid. Valid values are 'Y', 'N', space, or NUL.

MERR_INV_ADDRSTATE shipToState is invalid. The field must be two characters in length or a NUL
string.

MERR_INV_PACKAGENUM The packageNumber and packageCount fields are incorrect or inconsistent.
Possible causes include:

 One of the fields is zero and the other is not

 One or both field values exceed 999.

 packageNumber is greater than packageCount

MERR_INV_WEIGHT packageWeight is invalid. This occurs if packageWeight exceeds 9999
(999 lbs.).

In addition to these values, a number of “internal” error codes are defined. All these errors have
a value of 100 or greater. Should you encounter an internal error code, please note the code and
contact Silver Bay Software technical support.

Notes:

 A Maxicode symbol can only hold about 100 characters; if you populate any of the
“optional” data elements of the input record, the encoder may not be able to generate a
symbol and will return a result code of 2 (MERR_TOO_LONG).

 For backward compatibility with older versions of the Maxicode encoder, the
shipToCity field is 35 characters long. However, you must truncate the city name to
20 characters maximum to comply with UPS’ latest specifications. Furthermore, it is
highly recommended that this field always be left blank; otherwise, the message may be
too long to encode.

 - 26 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

 Also for backward compatibility, the packageWeight field is expressed as an integer
in tenths of a pound. However, UPS now requires that the package weight be rounded up
to the next pound. You must still format the input to the encoder in tenths of a pound
(i.e., multiply the actual weight in pounds by 10).

 The degree to which the encoder API validates postal codes, country codes and service
classes is limited to ensuring that the data passed can be encoded into a Maxicode label
(i.e. is the correct length, and is of the correct type – digits or alphanumerics). The
encoder has no way to ensure that the actual data is valid.

 Be sure to always initialize the entire input record; failure to do so could result in
“garbage” characters being encoded, or even encoder errors (MERR_TOO_LONG,
message too long to encode).

Example:
 MAXIUPSINFO maxiInput;
 MAXIFONTOUT maxiOutput;

 /* Set entire structure to nulls (zeros) */
 memset(&maxiInput, 0, sizeof(maxiInput));

 /* Populate required fields */
 strcpy(maxiInput.postalCode, "841706672");
 maxiInput.countryCode = 840;
 maxiInput.serviceClass = 3
 strcpy(maxiInput.trackingNumber, "1Z12345675");
 strcpy(maxiInput.shipperNumber, "12345E");
 maxiInput.julianDayOfPickup = 89;
 maxiInput.packageNumber = 1;
 maxiInput.packageCount = 1;
 maxiInput.packageWeight = 100; /* In tenth's of a pound */
 maxiInput.addressValidation = 'Y';
 strcpy(maxiInput.shipToCity, "SALT LAKE CITY");
 strcpy(maxiInput.shipToState, "UT");
 maxiInput.modeControl = '0';

 /* Call the encoder */
 MaxUpsNC(&maxiInput, &maxiOutput);

 if (maxiOutput.resultCode == MERR_OK)
 {
 /* Call function to print symbol */
 PrintSymbol("CUPS", &maxiOutput);
 }
 else
 {
 printf("encoding error %d\n", (int)maxiOutput.resultCode);
 }

3.3 Visual Basic API
The encoder provides a version of the UPS encoding routine that is adapted for use by Visual
Basic programs, or by applications that use embedded Visual Basic techniques, such as
Microsoft Word or Microsoft Excel.

 - 27 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

In order to use the encoder with Visual Basic, you must define User Defined Types to match the
input and output data structures expected by the encoder, and declare the API function itself.
This may be done as indicated below.

Input to the encoder is performed using a User Defined Type formatted like this:
Private Type MaxicodeInput
 countryCode As Long
 serviceClass As Long
 julianDayOfPickup As Long
 packageNumber As Long
 packageCount As Long
 packageWeight As Long
 postalCode As String
 trackingNumber As String
 shipperNumber As String
 shipmentID As String
 shipToAddress As String
 shipToCity As String
 shipToState As String
 addressValidation As Boolean
 modeControl As String
End Type

The various elements are described in the following table:

Element Max Len Contents

postalCode 9 Required: the destination zip code/postal code represented as a
string. This field must contain one of the following:

 A 9 digit numeric, US Zip Code

 A 1-6 digit alphanumeric, International Postal Code (letters
must be upper case).

If countryCode is 840 (USA), this field must contain a 9 digit US
Zip code. If the last 4 digits of the zip code are not known, use
zeros.

countryCode N/A Required: the destination country code (USA = 840). A valid
country code between 0 and 999 must be specified.

serviceClass N/A Required: the UPS class of service for the package. Valid service
codes include:

 NEXT DAY AIR 1

 2ND DAY AIR 2

 3 DAY SELECT 12

 GROUNDTRAC 3

 DELIVERYTRAC II 5

 DELIVERYTRAC 8

Consult your UPS documentation for more information.

trackingNumber 10 Required: the UPS Tracking Number (composed of the two-
character data identifier, seven-digit reference number, and one digit
check digit), represented as a string.

shipperNumber 6 Required: your UPS-assigned Shipper Number represented as a
string.

 - 28 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Element Max Len Contents

julianDayOfPickup N/A Required: the numeric day of the year in which the package was
picked up (Jan 1 = 1, Jan 31 = 31, Feb 1 = 32, Feb 28 = 57, etc.).
Value cannot exceed 366.

shipmentId 30 Optional: the shipper-assigned identification number for the
shipment represented as a string.

If not specified, this field must contain an empty string (“”).

It is highly recommended that this field always be left blank;
otherwise, the message may be too long to encode.

packageNumber N/A Required: the “N” in “Package N of X.” Value cannot exceed 999.

packageCount N/A Required: the “X” in “Package N of X.” Value cannot exceed 999.

packageWeight N/A Required: the weight of the package in 10ths of a pound (e.g., 2lbs
= 20). Value cannot exceed 9999 (999 pounds). UPS requires that
the package weight be rounded up to next pound.

If not known, this field must be zero.

addressValidation 1 Required: indicates that the address information provided comes
from a certified data source. Valid values are True or False

shipToAddress 35 Optional: the destination street address represented as a string.

If not specified, this field must contain an empty string.

shipToCity 35 Required: the destination city represented as a string.

NOTE: even though this field allows up to 35 characters, you must
truncate the city name to 20 characters maximum; otherwise your
Maxicode symbol may not encode.

It is highly recommended that this field always be left blank;
otherwise, the message may be too long to encode.

shipToState 2 Required: the destination state abbreviation represented as a string.

modeControl 1 Required: Encoder mode control

This field is new in the Version 2.1.x encoder. It has the following
defined values:

“0” Use the AIM-standard algorithm to automatically
determine the encoding mode.

“1” Use the alternate UPS algorithm to automatically
determine the encoding mode.

“2” Force the encoder to use Mode 2 to encode the symbol.

“3” Force the encoder to use Mode 3 to encode the symbol.

See the section entitled Maxicode Encoding Modes on page 10 for
more details.

The output area contains two fields:
Private Type MaxicodeOutput
 resultCode As Integer
 outputLine(16) As String
End Type

 - 29 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Element Max Len Contents

outputLine 17x30 If the encoder can successfully encode the input data, this table will contain
the font characters which, when printed using the provided font, will create the
Maxicode symbol.

resultCode N/A The encoder returns its status in this field. If the encoder was successful, zero
is returned; otherwise an error code is returned (see next table).

The following values are defined for the resultCode field:

Value Meaning

0 Success

1 An invalid parameter was passed. This typically indicates that a NULL pointer was passed to the
encoder. This error does not normally occur with Visual Basic programs.

2 The data passed will not fit in a single Maxicode symbol; too many of the optional fields have been
populated.

3 postalCode s invalid. Possible causes include:

 postalCode contains characters other than digits and upper-case alphabetic characters.

 COUNTRY-CODE is 840 and postalCode is not a 5-digit or 9-digit Zip Code.

4 countryCode is invalid. This occurs if countryCode is not numeric.

5 serviceClass is invalid. This occurs if serviceClass is not numeric.

6 trackingNumber is not 10 characters.

7 addressValidation is invalid. Valid values are “True” and “False”

8 shipToState is invalid. The field must be two characters in length or all blanks.

9 The packageNumber and packageCount fields are incorrect or inconsistent. Possible causes include:

 One of the fields is zero and the other is not

 One or both of the fields are not numeric

 packageNumber is greater than packageCount

11 packageWeight is invalid. Possible causes include:

 The field is not numeric

 The field has not been formatted correctly (must be in the range of 0 through 999)

In addition to these values, a number of “internal” error codes are defined. All these errors have
a value of 100 or greater. Should you encounter an internal error code, please note the code and
contact Silver Bay Software technical support.

Finally, it is necessary to declare the API routine to Visual Basic:
Private Declare Sub MaxUpsVB Lib "maxicode2101.dll"
 (ByRef mxInput As MaxicodeInput, ByRef mxOutput As MaxicodeOutput)

Notes:

 A Maxicode symbol can only hold about 100 characters; if you populate any of the
“optional” data elements of the input record, the encoder may not be able to generate a
symbol and will return a result code of 2 (data too long).

 - 30 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

 The shipToCity field must be truncated to 20 characters maximum to comply with
UPS’ latest specifications. Furthermore, it is highly recommended that this field always
be left blank; otherwise, the message may be too long to encode.

 Also for backward compatibility, the packageWeight field is expressed as an integer
in tenths of a pound. However, UPS now requires that the package weight be rounded up
to the next pound. You must still format the input to the encoder in tenths of a pound
(i.e., multiply the actual weight in pounds by 10).

 The degree to which the encoder API validates postal codes, country codes and service
classes is limited to ensuring that the data passed can be encoded into a Maxicode label
(i.e. is the correct length, and is of the correct type – digits or alphanumerics). The
encoder has no way to ensure that the actual data is valid.

 Be sure to always initialize the entire input record; failure to do so could result in
“garbage” characters being encoded, or even encoder errors (MERR_TOO_LONG,
message too long to encode).

Example:
 Dim mxInput As MaxicodeInput
 Dim mxOutput As MaxicodeOutput

 mxInput.countryCode = 840
 mxInput.serviceClass = 1
 mxInput.trackingNumber = "1Z12345670"
 mxInput.shipperNumber = "123456"
 mxInput.julianDayOfPickup = 12
 mxInput.packageCount = 1
 mxInput.packageNumber = 1
 mxInput.packageWeight = 10
 mxInput.postalCode = "339120000"
 mxInput.shipToCity = "Fort Myers"
 mxInput.shipToState = "FL"
 mxInput.addressValidation = False
 mxInput.modeControl = "0"

 Call MaxUpsVB(mxInput, mxOutput)

 If mxOutput.resultCode = 0 Then
 For i = 0 To 16
 'Print mxOutput.outputLine(i) via the appropriate method
 Next i
 Else
 'an error has occurred
 End If

 - 31 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

4 Generic Maxicode API’s
Although the UPS shipping functions described in the previous chapter will suffice for most
applications, the encoder provides a more “generic” set of functions for generating Maxicode
symbols and manipulating their contents. These API’s are described in this chapter.

4.1 COBOL Language API

4.1.1 Initialization

Before any of the encoding API functions are called, the encoder must be initialized. This
process indicates to the encoder which binary values it should use to output the encoded symbol.
This is important because different printers and different host-to-printer interconnect methods
result in different character translations between host and printer. The Maxicode encoder
compensates for such variations by outputting different values, by using different font files, or
both. Be sure you read the chapter entitled Printing the Maxicode Symbol for information
related to how to print the symbol characters properly in your environment.

Call examples:
CALL "MAXINIT" USING MAXICODE-FONT-INFO-REC.

Arguments:

Position Record Format Use

1 MAXICODE-FONT-INFO-REC Font characters to use

Notes:

 Be sure you read the chapter entitled for information related to how to print the symbol
characters properly in your environment.

 This function does not need to be called before every symbol encoded. It only needs to
be called once as part of program initialization.

 If this function is not called, the default values indicated below are used. These default
values may not be appropriate for your environment.

The record used by this function has the following format:
 01 MAXICODE-FONT-INFO-REC.
 05 NO-HEX-CHAR PIC X.
 05 LO-HEX-CHAR PIC X.
 05 HI-HEX-CHAR PIC X.
 05 TWO-HEX-CHAR PIX X.
 05 PAD-CHAR PIX X.
 05 BULL-CHAR PIX X.

The elements of this record are as follows:

 - 32 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Element Contents

NO-HEX-CHAR The “full width blank” character.

LO-HEX-CHAR The character containing the second row hexagon.

HI-HEX-CHAR The character containing the first row hexagon.

TWO-HEX-CHAR The character containing both hexagons.

PAD-CHAR The “narrow blank” character.

BULL-CHAR The character containing the bull’s-eye character.

Default values output by the encoder (in hexadecimal) are:
Element ASCII EBCDIC

NO-HEX-CHAR 0x30 0xF0

LO-HEX-CHAR 0x31 0xF1

HI-HEX-CHAR 0x32 0xF2

TWO-HEX-CHAR 0x33 0xF3

PAD-CHAR 0x34 0xF4

BULL-CHAR 0x35 0xF5

4.1.2 Result Codes
The Maxicode encoder API functions indicate success or failure by returning a numeric result code in the output
record. The following return codes are defined:

Value Meaning

000 Success

001 An invalid parameter was passed. This typically indicates a NULL pointer, to a function.

002 The data passed would not fit in a single Maxicode symbol.

003 The postal code was invalid. Possible causes include:

 The postal code is longer than 9 digits, or 6 alphanumeric characters

 The postal code contains characters other than digits and upper-case alphabetic characters

004 The country code was invalid. Possible causes include:

 The country code was not numeric or it was greater than 999.

005 The service class was invalid. Possible causes include:

 The service class was not numeric or it was greater than 999.

006 The tracking number field of the UPS structure was invalid (wrong length)

007 The address validation field of the UPS structure was invalid. Valid values are ‘Y’, ‘N’, space or NUL

008 The SHIP-TO-STATE field of the UPS structure was invalid. It must be either empty (all blanks), or
two characters in length.

009 The package number and package count fields are incorrect or inconsistent. Possible causes include:

 One of the fields is zero and the other is not

 The package number is greater than the package count

 - 33 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Value Meaning

010 The symbol number or symbol count fields are incorrect or inconsistent. Possible causes include:

 One of the fields is less than 1 or greater than 8.

 The symbol number is larger than the symbol count

011 The weight is invalid. Typically caused by a weight greater than 999.9 pounds.

In addition to these values, a number of “internal” error codes are defined. All these have values
100 or greater. Should you encounter an internal error code, please note the error code and
contact Silver Bay Software technical support.

Note that the degree to which the encoder API validates postal codes, country codes and service
classes is limited to ensuring that the data passed can be encoded into a Maxicode label. The
encoder does not ensure that the actual data is valid.

4.1.3 Record Formats

4.1.3.1 Output Record

All the Maxicode encoder COBOL API functions return their output into a record of the following form:

 01 MAXICODE-OUTPUT-REC.
 05 OUTPUT-LINES PIC X(30) OCCURS 17.
 05 RESULT-CODE PIC 9(3).

The elements of this record are as follows:
Element Contents

OUTPUT-LINES This is the output data. This area consists of 17 rows of 30 characters. When rendered in
the special Maxicode font provided with the encoder, these characters produce the image of
the Maxicode symbol.

RESULT-CODE This code indicates the success or failure of the operation. See Result Codes on page 33
for a description of the values.

4.1.3.2 UPS-Specific Input Record Format

The following record format is used as input to the UPS-specific encoder routines:
 01 MAXICODE-UPS-INFO-REC.
 05 POSTAL-CODE PIC X(9).
 05 COUNTRY-CODE PIC 9(3).
 05 SERVICE-CLASS PIC 9(3).
 05 TRACKING-NUMBER PIC X(10).
 05 SHIPPER-NUMBER PIC X(6).
 05 JULIAN-DAY-OF-PICKUP PIC 9(3).
 05 SHIPMENT-ID PIC X(30).
 05 PACKAGE-NUMBER PIC 9(4).
 05 PACKAGE-COUNT PIC 9(4).
 05 PACKAGE-WEIGHT PIC 999.9.
 05 ADDRESS-VALIDATION PIC X(1).
 05 SHIP-TO-ADDRESS PIC X(35).
 05 SHIP-TO-CITY PIC X(35).
 05 SHIP-TO-STATE PIC X(2).
 05 MODE-CONTROL PIC X(1).

The mandatory elements of this record are as follows:

 - 34 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Element Contents

COUNTRY-CODE The country code for the destination country.
(USA’s country code is 840)

SERVICE-CLASS The “class of service” code assigned by UPS.

POSTAL-CODE The destination postal code. For all-numeric postal codes, this may be up to
nine digits.

If the country code is set to 840 (USA), this field must be exactly 5 or 9 digits in
length.

For postal codes containing alphabetic characters (which must be in upper case),
the limit is six characters.

Space pad the field for postal codes less than 9 digits.

TRACKING-NUMBER The 10-character UPS tracking number for the item.

MODE-CONTROL Encoder mode control

This field is new in the Version 2.1.x encoder. It has the following defined
values:

‘0’ Use the AIM-standard algorithm to automatically determine the
encoding mode.

‘1’ Use the alternate UPS algorithm to automatically determine the
encoding mode.

‘2’ Force the encoder to use Mode 2 to encode the symbol.

‘3’ Force the encoder to use Mode 3 to encode the symbol.

See the section entitled Maxicode Encoding Modes on page 10 for more
details.

The optional elements of the record are shown below. To omit a numeric item, set it to zero. To
omit a string item, set it to all spaces.

Element Max Len Contents

SHIPPER-NUMBER 6 The UPS-assigned number for the shipper

JULIAN-DAY-OF-PICKUP 3 The numeric day of the year in which the package was picked up.
(Jan 1 = 1, Jan 31 = 31, Feb 1 = 32, Feb 28 = 57, etc)

SHIPMENT-ID 30 The shipper-assigned identification number for the shipment

PACKAGE-NUMBER 4 The “N” in “Package N of X”

PACKAGE-COUNT 4 The “X” in “Package N of X”

PACKAGE-WEIGHT The weight of the package in pounds and tenths of pounds

ADDRESS-VALIDATION 1 “Y”, “N” (or space to omit)

SHIP-TO-ADDRESS 35 The destination street address

SHIP-TO-CITY 35 The destination city

SHIP-TO-STATE 2 The destination state abbreviation

NOTE: If all the information listed in these tables is provided for an individual package, it is
quite possible that the data will not fit into a single symbol. After encoding the message header,
mandatory information and the message terminator, a Maxicode symbol only has space for a
maximum of 53 characters of optional information. This includes the GS characters separating

 - 35 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

the fields. As a result, a single symbol can hold only a maximum of 43 characters of optional
information.

Input parameter validation is limited to ensuring that the data passed in will fit within a
Maxicode barcode. The data tests are thus typically limited to ensuring that individual fields are
not too big to encode.

4.1.3.3 SCM-Specific Input Record Format

The following record format is used as input to the SCM encoder routines:
 01 MAXICODE-SCM-REC.
 05 SYMBOL-NUM PIC 9(1).
 05 SYMBOL-COUNT PIC 9(1).
 05 POSTAL-CODE-LEN PIC 9(1).
 05 POSTAL-CODE PIC X(9).
 05 COUNTRY-CODE PIC 9(3).
 05 SERVICE-CLASS PIC 9(3).
 05 SECONDARY-MSG-LEN PIC 9(3).
 05 SECONDARY-MSG PIC X(126).
 05 MODE-CONTROL PIC X(1).

The elements of this record are as follows:
Element Contents

SYMBOL-NUM The “N” in “Symbol N of X”. If only one symbol is being generated, this should be
set to 1.

SYMBOL-COUNT The “X” in “Symbol N of X”. If only one symbol is being generated, this should be
set to 1.

POSTAL-CODE-LEN Length of the postal code (1-9 for numeric postal codes, 1-6 for alphanumeric postal
codes)

POSTAL-CODE The destination postal code. For all-numeric postal codes, this may be up to nine
digits.

If the country code is set to 840 (USA), this field must be exactly 5 or 9 digits in
length.

For postal codes containing alphabetic characters (which must be in upper case), the
limit is six characters.

Space pad the field for postal codes less than 9 digits.

COUNTRY-CODE The country code for the destination country.
(USA’s country code is 840)

SERVICE-CLASS The “class of service” code

SECONDARY-MSG-LEN The length of the secondary message field.

SECONDARY-MSG The secondary message field itself.

 - 36 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Element Contents

MODE-CONTROL Encoder mode control

This field is new in the Version 2.1.x encoder. It has the following defined values:

‘0’ Use the AIM-standard algorithm to automatically determine the encoding
mode.

‘1’ Use the alternate UPS algorithm to automatically determine the encoding
mode.

‘2’ Force the encoder to use Mode 2 to encode the symbol.

‘3’ Force the encoder to use Mode 3 to encode the symbol.

See the section entitled Maxicode Encoding Modes on page 10 for more details.

4.1.3.4 Pre-Formatted String Input Record Format

The following record format is used as input to the string encoder routines:
 01 MAXICODE-STRING-REC.
 05 SYMBOL-NUM PIC 9(1).
 05 SYMBOL-COUNT PIC 9(1).
 05 INPUT-LEN PIC 9(3).
 05 INPUT-STRING PIC X(144).

The elements of this record are as follows:
Element Contents

SYMBOL-NUM The “N” in “Symbol N of X”. If only one symbol is being generated, this should be set to
1.

SYMBOL-COUNT The “X” in “Symbol N of X”. If only one symbol is being generated, this should be set to
1.

INPUT-LEN Length of the pre-formatted input string.

INPUT-STRING The pre-formatted Structured Carrier Message string.

4.1.4 Encoding Structured Carrier Message Symbols

The Maxicode encoder provides support for encoding Structured Carrier Messages in a variety of
manners:

 Via UPS-specific functions.
This is the simplest way to encode a Maxicode symbol for UPS use. All internal
formatting is handled automatically by the function.

 Via String functions.
If your application is already constructing Structured Carrier Message strings, these
functions will accept this as input. These functions are not UPS-specific, but will
generate UPS-compatible output if the string input is formatted properly.

 Via generic Structured Carrier Message (SCM) functions.
These functions are the most general purpose and powerful. They permit the generation
of Structured Message Append symbols, but require the secondary message to be
properly formatted as discussed in Primary and Secondary Message Formats on page
13. As with the string functions, these functions are not UPS-specific, but will generate
UPS-compatible output if the input is formatted properly.

 - 37 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

In addition, the Maxicode encoder provides two versions of each API function. One version
assumes that the input data is in the native character set of the local computer system (ASCII or
EBCDIC). These functions automatically perform ANSI EBCDIC-to-ASCII conversion on their
input data if the native character set is EBCDIC. The other assumes that its input is in ASCII,
regardless of whether the local computer system is based on ASCII or EBCDIC, and thus
performs no character translations, even on EBCDIC machines. Normally, the native functions
are the simplest to use. The ASCII functions are provided to handle the case where binary
information is encoded that would be improperly handled by an internal EBCDIC-to-ASCII
conversion, or where an EBCDIC-to-ASCII conversion other than the ANSI standard one is
required.

The API functions available are as follows:
Function Input form Character Set

MAXUPSA UPS Structure ASCII

MAXUPSN UPS Structure Native

MAXSCMA SCM Structure ASCII

MAXSCMN SCM Structure Native

MAXSTRA SCM String ASCII

MAXSTRN SCM String Native

4.1.4.1 UPS Functions

The UPS-specific functions are listed below. These functions take their input in a record that
contains all the mandatory and optional fields for a UPS-specific Maxicode symbol. These
routines then automatically perform the low-level message formatting required. These routines
provide the easiest-to-use method of integrating UPS Maxicode support into an application.

Call examples:
CALL "MAXUPCN" USING MAXICODE-UPS-INFO-REC, MAXICODE-OUTPUT-REC.

CALL "MAXUPCA" USING MAXICODE-UPS-INFO-REC, MAXICODE-OUTPUT-REC.

Arguments:

Position Record Format Use

1 MAXICODE-UPS-INFO-REC Input data

2 MAXICODE-OUTPUT-REC Output data

Notes:

 No support is provided for Structured Append using the UPS-specific functions. If the
presented data does not fit into a single symbol, the result code 002 will be returned. To
break information up across two or more symbols, the SCM functions must be used.

 MAXUPCN assumes the contents of the input record are in the native character set, and
performs EBCDIC to ASCII conversions automatically as required.

Example (The following code segment is from the sample program CBLUPS)

 - 38 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

* This section formats input data, creates a call to sub- *
* routines and creates an output file which includes a maxicode
* symbol and a result code from each call *

 2000-PROCESS-DATA.

 PERFORM 3000-POPULATE-UPS-REC.
 PERFORM 4000-ENCODE-SYMBOL.
 IF MAXI-OK
 PERFORM 5000-PRINT-SYMBOL
 ELSE
 DISPLAY 'Encoder failed. Error code = '
 RESULT-CODE.

* Populate the fields in the UPS record. *

 3000-POPULATE-UPS-REC.

 MOVE '339010000' TO POSTAL-CODE.
 MOVE 840 TO COUNTRY-CODE.
 MOVE 001 TO SERVICE-CLASS.
 MOVE '1Z34567890' TO TRACKING-NUMBER.
 MOVE '102562' TO SHIPPER-NUMBER.
 MOVE 034 TO JULIAN-DAY-OF-PICKUP.
 MOVE SPACES TO SHIPMENT-ID.
 MOVE 1 TO PACKAGE-NUMBER.
 MOVE 1 TO PACKAGE-COUNT.
 MOVE 20.0 TO PACKAGE-WEIGHT.
 MOVE 'Y' TO ADDRESS-VALIDATION.
 MOVE '2201 SECOND ST' TO SHIP-TO-ADDRESS.
 MOVE 'FT MYERS' TO SHIP-TO-CITY.
 MOVE 'FL' TO SHIP-TO-STATE.
 MOVE '0' TO MODE-CONTROL.

* Call the Maxicode encoder. *

 4000-ENCODE-SYMBOL.

 CALL 'MAXUPSN' USING MAXICODE-UPS-INFO-REC
 MAXICODE-OUTPUT-REC.

 - 39 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

4.1.4.2 String Functions

The string functions take as their input records containing a pre-formatted Structured Carrier
Message string, along with the length of that string. The routines encode the contents of this
string into the Maxicode symbol. Use these functions if your application is already formatting
Structured Carrier Messages that you want to represent in a Maxicode symbol.

Call examples:
CALL "MAXSTRN" USING MAXICODE-STRING-REC, MAXICODE-OUTPUT-REC.

CALL "MAXSTRA" USING MAXICODE-STRING-REC, MAXICODE-OUTPUT-REC.

Arguments:

Position Record Format Use

1 MAXICODE-STRING-REC Input data

2 MAXICODE-OUTPUT-REC Output data

Notes:

 No support is provided for Structured Append using the String functions. If the presented
data does not fit into a single symbol, the result code 002 will be returned. To break
information up across two or more symbols, the SCM functions must be used.

 MAXSTRN assumes the contents of the input record are in the native character set, and
performs EBCDIC to ASCII conversions automatically as required.

 An example of a pre-formatted Structured Carrier Message string is shown below:
 [)>RS01

G
S96123456789

G
S840

G
S001

G
S1Z12345678

G
SUPSN

R
S
E
OT

Example (The following code segment is from the sample program CBLSTR)

* This section formats input data, creates a call to sub- *
* routines and creates an output file which includes a maxicode
* symbol and a result code from each call *

 2000-PROCESS-DATA.

 PERFORM 3000-POPULATE-STRING-REC
 PERFORM 4000-ENCODE-SYMBOL
 IF MAXI-OK
 PERFORM 5000-PRINT-SYMBOL
 ELSE
 DISPLAY 'Encoder failed. Error code = '
 RESULT-CODE.

* Populate the fields in the STRING record. *

 3000-POPULATE-STRING-REC.

 MOVE 1 TO SYMBOL-NUM
 MOVE 1 TO SYMBOL-COUNT

* We need to build the SCM string as per the *

 - 40 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

* specification. Start with the standard 9 *
* byte header. *

 MOVE SCM-HEADER TO TMP-DATA
 MOVE 9 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD

* Append postal code
 MOVE '339010000' TO TMP-DATA
 MOVE 9 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Ship-To country code
 MOVE '840' TO TMP-DATA
 MOVE 3 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Class of Service
 MOVE '001' TO TMP-DATA
 MOVE 3 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Tracking number
 MOVE '1Z34567890' TO TMP-DATA
 MOVE 10 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append SCAC code
 MOVE 'UPSN' TO TMP-DATA
 MOVE 4 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append UPS Shipper Number
 MOVE '102562' TO TMP-DATA
 MOVE 6 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Julian Day of Pickup
 MOVE '034' TO TMP-DATA
 MOVE 3 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Shipment ID Number (none, so just GS)
 PERFORM 2200-APPEND-GS

* Append Package N of X
 MOVE '1/1' TO TMP-DATA
 MOVE 3 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Weight (this is 20 lbs)
 MOVE '20' TO TMP-DATA
 MOVE 2 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

 - 41 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

* Append Address Validation
 MOVE 'Y' TO TMP-DATA
 MOVE 1 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Ship-To Address
 MOVE '2201 SECOND ST' TO TMP-DATA
 MOVE 14 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Ship-To City
 MOVE 'FT MYERS' TO TMP-DATA
 MOVE 8 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Ship-To State
 MOVE 'FL' TO TMP-DATA
 MOVE 2 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD

* Append the SCM trailer (RS + EOT)
 MOVE SCM-TRAILER TO TMP-DATA
 MOVE 2 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD

 MOVE TMP-STRING TO INPUT-STRING
 MOVE TMP-STRING-LEN TO INPUT-LEN.

* Append TMP-FIELD to the end of TMP-STRING *

 2100-MOVE-FIELD.

 MOVE TMP-DATA TO
 TMP-STRING(TMP-STRING-LEN + 1 : TMP-DATA-LEN)
 ADD TMP-DATA-LEN TO TMP-STRING-LEN.

* Append a group seperator to the secondary message *

 2200-APPEND-GS.

 MOVE NATIVE-GS TO TMP-DATA
 MOVE 1 TO TMP-DATA-LEN

 PERFORM 2100-MOVE-FIELD.

* Call the Maxicode encoder. *

 4000-ENCODE-SYMBOL.

 CALL 'MAXSTRN' USING MAXICODE-STRING-REC
 MAXICODE-OUTPUT-REC.

 - 42 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

4.1.4.3 Generic Structured Carrier Message (SCM) Functions

The SCM functions take as their input a record containing non-UPS-specific Structured Carrier
Message data. The contents of this record reflect the low-level formatting of a Structured Carrier
Message in a Maxicode, and require that the user perform the proper formatting of the Secondary
Message portion of the message. (See the section titled Primary and Secondary Message
Formats). These routines also provide support for Structured Append. Use these functions if
you are preparing a Structured Carrier Message for a carrier other than UPS and it is not
convenient to use the String functions, or in situations in which it is necessary to split a message
across two or more symbols.

Call examples:
CALL "MAXSCMN" USING MAXICODE-SCM-REC, MAXICODE-OUTPUT-REC.

CALL "MAXSCMA" USING MAXICODE-SCM-REC, MAXICODE-OUTPUT-REC.

Arguments:

Position Record Format Use

1 MAXICODE-SCM-REC Input data

2 MAXICODE-OUTPUT-REC Output data

Notes:

 MAXSCMN assumes the contents of the input structure are in the native character set,
and performs EBCDIC to ASCII conversions automatically as required.

Example (The following code segment is from the sample program CBLSCM)

* This section formats input data, creates a call to sub- *
* routines and creates an output file which includes a maxicode
* symbol and a result code from each call *

 2000-PROCESS-DATA.

 PERFORM 3000-POPULATE-SCM-REC
 PERFORM 4000-ENCODE-SYMBOL
 IF MAXI-OK
 PERFORM 5000-PRINT-SYMBOL
 ELSE
 DISPLAY 'Encoder failed. Error code = '
 RESULT-CODE.

* Populate the fields in the SCM record. *

 3000-POPULATE-SCM-REC.

 MOVE 1 TO SYMBOL-NUM
 MOVE 1 TO SYMBOL-COUNT
 MOVE '339010000' TO POSTAL-CODE
 MOVE 9 TO POSTAL-CODE-LEN
 MOVE 840 TO COUNTRY-CODE
 MOVE 001 TO SERVICE-CLASS
 MOVE '0' TO MODE-CONTROL

 - 43 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

* We need to build the secondary message as *
* per the specification. Start with the *
* standard 9 byte header. *

 MOVE SCM-HEADER TO TMP-DATA
 MOVE 9 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD

* Append Tracking number
 MOVE '1Z34567890' TO TMP-DATA
 MOVE 10 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append SCAC code
 MOVE 'UPSN' TO TMP-DATA
 MOVE 4 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append UPS Shipper Number
 MOVE '102562' TO TMP-DATA
 MOVE 6 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Julian Day of Pickup
 MOVE '034' TO TMP-DATA
 MOVE 3 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Shipment ID Number (none, so just GS)
 PERFORM 2200-APPEND-GS

* Append Package N of X
 MOVE '1/1' TO TMP-DATA
 MOVE 3 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Weight (this is 20 lbs)
 MOVE '20' TO TMP-DATA
 MOVE 2 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Address Validation
 MOVE 'Y' TO TMP-DATA
 MOVE 1 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Ship-To Address
 MOVE '2201 SECOND ST' TO TMP-DATA
 MOVE 14 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD
 PERFORM 2200-APPEND-GS

* Append Ship-To City
 MOVE 'FT MYERS' TO TMP-DATA
 MOVE 8 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD

 - 44 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

 PERFORM 2200-APPEND-GS

* Append Ship-To State
 MOVE 'FL' TO TMP-DATA
 MOVE 2 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD

* Append the SCM trailer (RS + EOT)
 MOVE SCM-TRAILER TO TMP-DATA
 MOVE 2 TO TMP-DATA-LEN
 PERFORM 2100-MOVE-FIELD

 MOVE TMP-SCND-MSG TO SECONDARY-MSG
 MOVE TMP-SCND-MSG-LEN TO SECONDARY-MSG-LEN.

* Append TMP-FIELD to the end of TMP-SCND-MSG *

 2100-MOVE-FIELD.

 MOVE TMP-DATA TO
 TMP-SCND-MSG(TMP-SCND-MSG-LEN + 1 : TMP-DATA-LEN)
 ADD TMP-DATA-LEN TO TMP-SCND-MSG-LEN.

* Append a group seperator to the secondary message *

 2200-APPEND-GS.

 MOVE NATIVE-GS TO TMP-DATA
 MOVE 1 TO TMP-DATA-LEN

 PERFORM 2100-MOVE-FIELD.

* Call the Maxicode encoder. *

 4000-ENCODE-SYMBOL.

 CALL 'MAXSCMN' USING MAXICODE-SCM-REC
 MAXICODE-OUTPUT-REC.

4.1.5 Encoding Generic Message (Non-Structured Carrier Message) Data

Although Maxicode was designed primarily for representing Structured Carrier Message data
sets, it can be used to encode generic unstructured data as well, using modes 4 and 5, as
discussed in Internal Encoding Details on page 8. The Maxicode encoder provides four
functions to allow the creation of Maxicode symbols that do not follow the Structured Carrier
Message format. Two levels of error correction are supported – Standard Error Correction,
corresponding to Mode 4, and Extended Error Correction, corresponding to Mode 5. Extended
Error Correction provides better protection against symbol damage, at the expense of allowing
fewer characters to be encoded into a symbol. As with the Structured Carrier Message functions,
ASCII and Native version are provided for each function.

The API functions available are as follows:
Function Error Correction Character Set

MAXSECA Standard ASCII

 - 45 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

MAXSECN Standard Native

MAXEECA Extended ASCII

MAXEECN Extended Native

Call examples:
CALL "MAXSECA" USING MAXICODE-STRING-REC, MAXICODE-OUTPUT-REC.

CALL "MAXSECN" USING MAXICODE-STRING-REC, MAXICODE-OUTPUT-REC.

CALL "MAXEECA" USING MAXICODE-STRING-REC, MAXICODE-OUTPUT-REC.

CALL "MAXEECN" USING MAXICODE-STRING-REC, MAXICODE-OUTPUT-REC.

Arguments:

Position Record Format Use

1 MAXICODE-STRING-REC Input data

2 MAXICODE-OUTPUT-REC Output data

Notes:

 MAXSECN and MAXEECN assume the contents of the input data are in the native
character set, and perform EBCDIC to ASCII conversions automatically as required.

Example (The following code segment is from the sample program CBLEEC):

* This section formats input data, creates a call to sub- *
* routines and creates an output file which includes a maxicode
* symbol and a result code from each call *

 2000-PROCESS-DATA.

 PERFORM 3000-POPULATE-EEC-REC
 PERFORM 4000-ENCODE-SYMBOL
 IF MAXI-OK
 PERFORM 5000-PRINT-SYMBOL
 ELSE
 DISPLAY 'Encoder failed. Error code = '
 RESULT-CODE.

* Populate the fields in the SCM record. *

 3000-POPULATE-EEC-REC.

 MOVE 1 TO SYMBOL-NUM
 MOVE 1 TO SYMBOL-COUNT

 MOVE "This is a message encoded using mode 5 (EEC)." TO
 INPUT-STRING
 MOVE 45 TO INPUT-LEN.

* Call the Maxicode encoder. *

 4000-ENCODE-SYMBOL.

 - 46 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

 CALL 'MAXEECN' USING MAXICODE-STRING-REC
 MAXICODE-OUTPUT-REC.

4.2 C Language API

4.2.1 Initialization

Before any of the encoding API functions are called, the encoder must be initialized. This
process indicates to the encoder which binary values it should use to output the encoded symbol.
This is important because different printers and different host-to-printer interconnect methods
result in different character translations between host and printer. The Maxicode encoder
compensates for such variations by outputting different values, by using different font files, or
both. Be sure you read the chapter entitled Printing the Maxicode Symbol for information
related to how to print the symbol characters properly in your environment.

Prototype:
#include "maxiapi.h" /* prototypes and structures */

void MaxInitC(MAXIINITCPTR pCharSet);

Arguments:

Name Use

pCharSet Pointer to a MAXIINIT structure containing the character set information.

Return Value:
None

Notes:

 This function does not need to be called before every symbol encoded. It only needs to
be called once as part of program initialization.

 If this function is not called, the default values indicated below are used. These default
values may not be appropriate for your environment.

The structure used by this function has the following definition:
struct sMaxiFontInit
{
 char noHexChar;
 char loHexChar;
 char hiHexChar;
 char twoHexChar;
 char padChar;
 char bullChar;
};
typedef struct sMaxiFontInit MAXIINIT;
typedef struct sMaxiFontInit MAXIPTR *MAXIINITPTR;
typedef const struct sMaxiFontInit MAXIPTR *MAXIINITCPTR;

The elements of this structure are as follows:
Element Contents

noHexChar The “full width blank” character.

 - 47 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

lohexChar The character containing the second row hexagon.

hiHexChar The character containing the first row hexagon.

twoHexChar The character containing both hexagons.

padChar The “narrow blank” character.

bullChar The character containing the bullseye character.

Default values output by the encoder (in hexadecimal) are:
Element ASCII EBCDIC

noHexChar 0x30 0xF0

loHexChar 0x31 0xF1

hiHexChar 0x32 0xF2

twoHexChar 0x33 0xF3

padChar 0x34 0xF4

bullChar 0x35 0xF5

4.2.2 Result Codes

The Maxicode encoder API functions indicate success or failure with a return code of type
MAXIERROR. The following return codes are defined:

Symbol Value Meaning

MERR_OK 0 Success

MERR_INV_PARAM 1 An invalid parameter was passed. This typically indicates a NULL
pointer, to a function.

MERR_TOO_LONG 2 The data passed would not fit in a single Maxicode symbol.

MERR_INV_POSTALCODE 3 The postal code was invalid. Possible causes include:

 The postal code is longer than 9 digits, or 6 alphanumeric
characters

 The postal code contains characters other than digits and
upper-case alphabetic characters

For country code 840 (USA), the postal code is neither 5 nor 9
characters in length

MERR_INV_COUNTRYCODE 4 The country code was invalid. Possible causes include:

 The country code was longer than three digits (string) or
greater than 999.

MERR_INV_SERVICECLASS 5 The service class was invalid. Possible causes include:

 The service class was longer than three digits (string) or
greater than 999.

MERR_INV_TRACKINGNUM 6 The tracking number field of the UPS structure was invalid (wrong
length)

MERR_ADDR_VALIDATION 7 The address validation field of the UPS structure was invalid. Valid
values are ‘Y’, ‘N’, space or NUL

 - 48 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Symbol Value Meaning

MERR_INV_STATE 8 The shipToState field of the UPS structure was invalid. It must be
either empty or two characters in length.

MERR_INV_PACKAGENUM 9 The package number and package count fields are incorrect or
inconsistent. Possible causes include:

 One of the fields is zero and the other is not

 The package number is greater than the package count

MERR_INV_SYMBOLNUM 10 The symbol number or symbol count fields are incorrect or
inconsistent. Possible causes include:

 One of the fields is less than 1 or greater than 8.

 The symbol number is larger than the symbol count

MERR_INV_WEIGHT 11 The weight is invalid. Typically caused by a weight greater than
999.9 pounds.

In addition to these values, a number of “internal” error codes are defined. All these have a
value of 100 or greater. Should you encounter an internal error code, please note the code and
contact Silver Bay Software technical support.

Note that the degree to which the encoder API validates postal codes, country codes and service
classes is limited to ensuring that the data passed can be encoded into a Maxicode label (i.e. is
the correct length, and is of the correct type – digits or alphanumeric). The encoder has no way
to ensure that the actual data is valid.

4.2.3 Data Structures

This section describes the various C data structures used for input and output with the encoder
library. Note that some data elements may be larger than the maximum data length (for example,
postalCode is 12 bytes even though the longest zip code supported is 9 digits). This was
done to avoid potential data alignment problems with certain compilers and platforms.

4.2.3.1 Output Structure

All the Maxicode encoder API functions return their output in a structure of the following form:
#define MAXICODE_ROW_PAIRS 17
#define MAXICODE_COLS 30

struct sMaxicodeFontOutput
{
 char output[MAXICODE_ROWS][MAXICODE_COLS];
 MAXIERROR resultCode;
};
typedef struct sMaxicodeFontOutput MAXIFONTOUT;
typedef struct sMaxicodeFontOutput MAXIPTR *MAXIFONTOUTPTR;
typedef const struct sMaxicodeFontOutput MAXIPTR *MAXIFONTOUTCPTR;

The elements of this structure are as follows:
Element Contents

output This is the output data. This area consists of 17 rows of 30 characters. The rows are not
NUL-terminated.

 - 49 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

resultCode This code indicates the success or failure of the operation. See Result Codes on page 48 for
a description of the values.

4.2.3.2 UPS-Specific Input Structure

The following structure is used as input to the UPS-specific encoder routines documented on
page 54:

struct sMaxicodeUpsInfo
{
 unsigned long countryCode;
 unsigned long serviceClass;
 unsigned long julianDayOfPickup;
 unsigned long packageNumber;
 unsigned long packageCount;
 unsigned long packageWeight;
 char postalCode[12];
 char trackingNumber[12];
 char shipperNumber[8];
 char shipmentID[32];
 char shipToAddress[36];
 char shipToCity[36];
 char shipToState[4];
 char addressValidation;
 char modeControl;
 char pad[2];
};
typedef struct sMaxicodeUpsInfo MAXIUPSINFO;
typedef struct sMaxicodeUpsInfo MAXIPTR *MAXIUPSINFOPTR;
typedef const struct sMaxicodeUpsInfo MAXIPTR *MAXIUPSINFOCPTR;

The mandatory elements of this structure are as follows:
Element Contents

countryCode The country code for the destination country.
(USA’s country code is 840)

serviceClass The “class of service” code assigned by UPS.

postalCode The destination postal code represented as a NUL-terminated string. For all-numeric
postal codes, this may be up to nine digits.

If the country code is set to 840 (USA), this field must be numeric and exactly 5 or 9
digits in length.

For postal codes containing alphabetic characters (which must be in upper case), the
limit is six characters.

trackingNumber The 10-character UPS tracking number for the item. (NUL-terminated string)

modeControl Encoder mode control

This field is new in the Version 2.1.x encoder. It has the following defined values:

‘0’ Use the AIM-standard algorithm to automatically determine the encoding
mode.

‘1’ Use the alternate UPS algorithm to automatically determine the encoding
mode.

‘2’ Force the encoder to use Mode 2 to encode the symbol.

‘3’ Force the encoder to use Mode 3 to encode the symbol.

See the section entitled Maxicode Encoding Modes on page 10 for more details.

 - 50 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

The optional elements of the structure are shown below. To omit a numeric item, set it to zero.
To omit a string item, make the first character of the string a NUL character.

Element Max Len Contents

julianDayOfPickup N/A The numeric day of the year in which the package was picked up. (Jan
1 = 1, Jan 31 = 31, Feb 1 = 32, Feb 28 = 57, etc)

packageNumber N/A The “N” in “Package N of X”

packageCount N/A The “X” in “Package N of X”

packageWeight N/A The weight of the package in tenths of a pound. Thus, a 5-pound
package would have the value 50.

shipperNumber 6 The UPS-assigned number for the shipper (NUL-terminated string)

shipmentID 30 The shipper-assigned identification number for the shipment (NUL-
terminated string, up to 30 characters)

shipToAddress 35 The destination street address (NUL-terminated string, up to 35
characters)

shipToCity 35 The destination city (NUL-terminated string, up to 35 characters)

shipToState 2 The destination state abbreviation (2 characters, NUL-terminated
string)

addressValidation 1 “Y”, “N” or NUL to omit.

The maximum length listed for string parameters in the table above does not include the trailing
NUL character used to terminate the string. Note that some of the arrays are slightly longer than
the legal limit. For example, the postalCode field is limited to a maximum of 9 characters
plus a NUL, but the array is declared as 12 characters long. This is done for alignment and
portability reasons. Characters after the NUL terminator are ignored.

NOTE: If all the information listed in these tables is provided for an individual package, it is
quite possible that the data will not fit into a single symbol. After encoding the message header,
mandatory information, and the message terminator, a Maxicode symbol only has space for a
maximum of 53 characters of optional information. This includes the GS characters separating
the fields. As a result, a single symbol can hold only a maximum of 43 characters of optional
information.

Input parameter validation is limited to ensuring that the data passed in will fit within a
Maxicode barcode. The data tests are thus typically limited to ensuring that individual fields are
not too big to encode.

 - 51 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

4.2.3.3 SCM-Specific Input Structure

The following structure is used as input to the SCM encoder routines documented on page 56:
struct sMaxicodeSCM
{
 int symbolNum;
 int symbolCount;
 int postalCodeLen;
 char postalCode[MAX_POSTAL_CODE+1];
 int countryCode;
 int serviceClass;
 int secondaryMsgLen;
 char secondaryMsg[MAX_SECONDARY_MSG+1];
 int modeControl;
};
typedef struct sMaxicodeSCM MAXISCM;
typedef struct sMaxicodeSCM MAXIPTR *MAXISCMPTR;
typedef const struct sMaxicodeSCM MAXIPTR *MAXISCMCPTR;

The elements of this structure are as follows:
Element Max Len Contents

symbolNum N/A The “N” in “Symbol N of X”. If only one symbol is being generated,
this should be set to 1.

symbolCount N/A The “X” in “Symbol N of X”. If only one symbol is being generated,
this should be set to 1.

postalCodeLen N/A Length of the postal code (1-9 for numeric postal codes, 1-6 for
alphanumeric postal codes)

postalCode 9 The destination postal code represented as a NUL-terminated string.
For all-numeric postal codes, this may be up to nine digits.

If the country code is set to 840 (USA), this field must be exactly 5 or
9 digits in length.

For postal codes containing alphabetic characters (which must be in
upper case), the limit is six characters.

countryCode N/A The destination country code (USA = 840)

serviceClass N/A The class of service being used.

secondaryMsgLen N/A The length of the secondary message field.

secondaryMsg 126 The secondary message field itself. This may be NUL-terminated, but
is not required to be. For UPS applications, this field must be
formatted as described in Primary and Secondary Message Formats
on page 13.

 - 52 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Element Max Len Contents

modeControl 1 Encoder mode control

This field is new in the Version 2.1.x encoder. It has the following
defined values:

‘0’ Use the AIM-standard algorithm to automatically determine
the encoding mode.

‘1’ Use the alternate UPS algorithm to automatically determine
the encoding mode.

‘2’ Force the encoder to use Mode 2 to encode the symbol.

‘3’ Force the encoder to use Mode 3 to encode the symbol.

See the section entitled Maxicode Encoding Modes on page 10 for
more details.

NOTE: The secondary message maximum length of 126 characters applies only in the case in
which the entire secondary message is composed of digits, a situation which does not conform to
the UPS standards. This length is set to this value in order to allow the Maxicode encoder to
handle all possible encoding conditions, including those for non-UPS applications. In UPS
applications, the limit is 80 characters or less.

4.2.4 Encoding Structured Carrier Message Symbols

The Maxicode encoder provides support for encoding Structured Carrier Messages in a variety of
manners:

 Via UPS-specific functions.
This is the simplest way to encode a Maxicode symbol for UPS use. All internal
formatting is handled automatically by the function.

 Via String functions..
If your application is already constructing Structured Carrier Message strings, these
functions will accept this as input. These functions are not UPS-specific, but will
generate UPS-compatible output if the string input is formatted properly.

 Via generic Structured Carrier Message (SCM) functions.
These functions are the most general purpose and powerful. They permit the generation
of Structured Message Append symbols, but require the secondary message to be
properly formatted as discussed in Primary and Secondary Message Formats on page
13. As with the string functions, these functions are not UPS-specific, but will generate
UPS-compatible output if the input is formatted properly.

 Via the “Compressed Maxicode” functions.

In addition, the Maxicode encoder provides two versions of most API functions. One version
assumes that the input data is in the native character set of the local computer system (ASCII or
EBCDIC). These functions automatically perform ANSI EBCDIC-to-ASCII conversion on their
input data if the native character set is EBCDIC. The other assumes that its input is in ASCII,
regardless of whether the local computer system is based on ASCII or EBCDIC, and thus
performs no character translations, even on EBCDIC machines. Normally, the native functions
are the simplest to use. The ASCII functions are provided to handle the case where binary
information is encoded that would be improperly handled by an internal EBCDIC-to-ASCII

 - 53 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

conversion, or where an EBCDIC-to-ASCII conversion other than the ANSI standard one is
required..

The API functions available are as follows:
Function Input form Character Set

MaxUpsAC UPS Structure ASCII

MaxUpsNC UPS Structure Native

MaxScmAC SCM Structure ASCII

MaxScmNC SCM Structure Native

MaxStrAC SCM String ASCII

MaxStrNC SCM String Native

MaxCmpAC Compressed Data Structure ASCII

4.2.4.1 UPS-Specific Functions

The UPS-specific functions are listed below. These functions take their input in a structure that
contains all the mandatory and optional fields for a UPS-specific Maxicode symbol. These
routines then automatically perform the low-level message formatting required. These routines
provide the easiest-to-use method of integrating UPS Maxicode support into an application.

Prototypes:
#include "maxiapi.h" /* prototypes and structures */

void MaxUpsAC(MAXIUPSINFOCPTR pInput, MAXIFONTOUTPTR pOutput);

void MaxUpsNC(MAXIUPSINFOCPTR pInput, MAXIFONTOUTPTR pOutput);

Arguments:

Name Use

pInput Pointer to a MAXIUPSINFO structure containing the input information

pOutput Pointer to a MAXIFONTOUT structure to receive the output

Return Value:
None

Notes:

 No support is provided for Structured Message Append using the UPS-specific functions.
If the presented data does not fit into a single symbol, the result code
MERR_TOO_LONG will be returned. To break information up across two or more
symbols, the SCM functions must be used.

 MaxUpsNC assumes the contents of the input structure are in the native character set, and
performs EBCDIC to ASCII conversions automatically as required.

Example (The following code segment is from the sample program CUPS)
MAXIUPSINFO maxiRecord;
MAXIFONTOUT maxiOutput;

 - 54 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

/* Initialize the UPS record */
maxiRecord.countryCode = 840;
maxiRecord.serviceClass = 1;
maxiRecord.julianDayOfPickup = 34;
maxiRecord.packageNumber = 1;
maxiRecord.packageCount = 1;
maxiRecord.packageWeight = 20; /* Note: in 10ths of a pound */
strcpy(maxiRecord.postalCode, "33901");
strcpy(maxiRecord.trackingNumber, "1Z34567890");
strcpy(maxiRecord.shipperNumber, "102562");
strcpy(maxiRecord.shipmentID, "");
strcpy(maxiRecord.shipToAddress, "2201 SECOND ST");
strcpy(maxiRecord.shipToCity, "FT MYERS");
strcpy(maxiRecord.shipToState, "FL");
maxiRecord.addressValidation = 'Y';
maxiRecord.modeControl = '0';

/* Call the encoder */
MaxUpsNC(&maxiRecord, &maxiOutput);

if (maxiOutput.resultCode == MERR_OK)
{
 PrintSymbol("CUPS", &maxiOutput);
}
else
{
 printf("encoding error %d\n", (int)maxiOutput.resultCode);
}

4.2.4.2 String Functions

The string functions take as their input pointers to a pre-formatted Structured Carrier Message
string, along with the length of that string. The routines encode the contents of this string into
the Maxicode symbol. Use these functions if your application is already formatting Structured
Carrier Messages that you want to represent in a Maxicode symbol.

Prototype:
#include "maxiapi.h" /* prototypes and structures */

void MaxStrAC(const char MAXIPTR *pInput,
 int inputLen,
 MAXIFONTOUTPTR pOutput);

void MaxStrNC(const char MAXIPTR *pInput,
 int inputLen,
 MAXIFONTOUTPTR pOutput);

Arguments:

Name Use

pInput Pointer to the pre-formatted Structured Carrier Message string

inputLen Length of the input string. If the input string is properly terminated with an EOT character, you
may pass a length of zero, and the routines will automatically determine the length.

pOutput Pointer to a MAXIFONTOUT structure to receive the output

 - 55 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Return Value:
None

Notes:

 No support is provided for Structured Message Append using the String functions. If the
presented data does not fit into a single symbol, the result code MERR_TOO_LONG will
be returned. To break information up across two or more symbols, the SCM functions
must be used.

 MaxStrNC assumes the contents of the input string are in the native character set, and
performs EBCDIC to ASCII conversions automatically as required.

 An example of a pre-formatted Structured Carrier Message string is shown below:
 [)>RS01

G
S96123456789

G
S840

G
S001

G
S1Z12345678

G
SUPSN

R
S
E
OT

Example (The following code segment is from the sample program CSTR. Note that it will
compile and run on both EBCDIC and ASCII machines without any modifications)

#define NATIVE_RS 0x1e
#define NATIVE_GS 0x1d
#if 'A' == 0x41
#define NATIVE_EOT 0x04 /* ASCII */
static char scmHeader[9] = { 0x5B, 0x29, 0x3E, NATIVE_RS,
 0x30, 0x31, NATIVE_GS,
 0x39, 0x36 };
#else
#define NATIVE_EOT 0x37 /* EBCDIC */
static char scmHeader[9] = { 0x4a, 0x5d, 0x6e, NATIVE_RS,
 0xf0, 0xf1, NATIVE_GS,
 0xf9, 0xf6 };
#endif
char scmString[256];
int offset;

/* Format message header */
 offset = sprintf(scmString,
 scmHeader);

/* Append the primary message fields */
offset += sprintf(scmString + offset,
 "%s%c%03d%c%03d%c",
 "33901", NATIVE_GS,
 840, NATIVE_GS,
 1, NATIVE_GS);

/* Append the remaining mandatory fields */
offset += sprintf(scmString + offset,
 "%s%cUPSN%c",
 "1Z34567890", NATIVE_GS,
 NATIVE_GS);

/* shipper #, day of pickup, shipment ID */
offset += sprintf(scmString + offset,
 "%s%c%03d%c%s%c",
 "102562", NATIVE_GS,
 34, NATIVE_GS,
 "", NATIVE_GS);

/* N/X, weight, address validation */

 - 56 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

offset += sprintf(scmString + offset,
 "%d/%d%c%d%c%c%c",
 1, 1, NATIVE_GS,
 2, NATIVE_GS,
 'Y', NATIVE_GS);

/* address, city, state */
offset += sprintf(scmString + offset,
 "%s%c%s%c%s%c%c",
 "2201 SECOND ST", NATIVE_GS,
 "FT MYERS", NATIVE_GS,
 "FL", NATIVE_RS, NATIVE_EOT);

/* Call the encoder */
MaxStrNC(scmString, (int)strlen(scmString), &maxiOutput);

if (maxiOutput.resultCode == MERR_OK)
{
 PrintSymbol("CSTR", &maxiOutput);
}
else
{
 printf("encoding error %d\n", (int)maxiOutput.resultCode);
}

4.2.4.3 Generic Structured Carrier Message (SCM) Functions

The SCM functions take as their input a MAXISCM structure. The contents of this structure
reflect the low-level formatting of a Structured Carrier Message in a Maxicode, and require that
the user perform the proper formatting of the Secondary Message portion of the message. (See
Primary and Secondary Message Formats on page 13). These routines also provide support
for Structured Message Append. Use these functions if you are preparing a Structured Carrier
Message for a carrier other than UPS and it is not convenient to use the String functions, or in
situations in which it is necessary to split a message across two or more symbols.

Prototypes:
#include "maxiapi.h" /* prototypes and structures */

void MaxScmAC(MAXISCMPTR pSCM, MAXIFONTOUTPTR pOutput);

void MaxScmNC(MAXISCMPTR pSCM, MAXIFONTOUTPTR pOutput);

Arguments:

Name Use

pSCM Pointer to the MAXISCM structure containing the input

pOutput Pointer to a MAXIFONTOUT structure to receive the output

Return Value:
None

Notes:

 MaxScmNC assumes the contents of the input structure are in the native character set,
and performs EBCDIC to ASCII conversions automatically as required.

 - 57 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

 See Structured Message Append on page 78 for more detail on building Structured
Message Append symbols.

Example (The following code segment is from the sample program CSCM)
#define NATIVE_RS 0x1e
#define NATIVE_GS 0x1d
#if 'A' == 0x41
#define NATIVE_EOT 0x04 /* ASCII */
static char scmHeader[9] = { 0x5B, 0x29, 0x3E, NATIVE_RS,
 0x30, 0x31, NATIVE_GS,
 0x39, 0x36 };
#else
#define NATIVE_EOT 0x37 /* EBCDIC */
static char scmHeader[9] = { 0x4a, 0x5d, 0x6e, NATIVE_RS,
 0xf0, 0xf1, NATIVE_GS,
 0xf9, 0xf6 };

MAXISCM maxiScm;
MAXIFONTOUT maxiOutput;
int offset;

maxiScm.symbolNum = 1;
maxiScm.symbolCount = 1;
memcpy(maxiScm.postalCode, "33901", 5);
maxiScm.postalCodeLen = 5;
maxiScm.countryCode = 840;
maxiScm.serviceClass = 1;
maxiScm.symbolNum = 1;

/* Format message header */
offset = sprintf(maxiScm.secondaryMsg,
 scmHeader);

/* SCAC and tracking # */
offset += sprintf(maxiScm.secondaryMsg + offset,
 "%s%cUPSN%c",
 "1Z34567890", NATIVE_GS,
 NATIVE_GS);

/* shipper #, day of pickup, shipment ID */
offset += sprintf(maxiScm.secondaryMsg + offset,
 "%s%c%03d%c%s%c",
 "102562", NATIVE_GS,
 34, NATIVE_GS,
 "", NATIVE_GS);

/* N/X, weight, address validation */
offset += sprintf(maxiScm.secondaryMsg + offset,
 "%d/%d%c%d%c%c%c",
 1, 1, NATIVE_GS,
 2, NATIVE_GS,
 'Y', NATIVE_GS);

/* address, city, state */
offset += sprintf(maxiScm.secondaryMsg + offset,
 "%s%c%s%c%s%c%c",
 "2201 SECOND ST", NATIVE_GS,
 "FT MYERS", NATIVE_GS,
 "FL", NATIVE_RS, NATIVE_EOT);

maxiScm.secondaryMsgLen = offset;

 - 58 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

/* Call the encoder */
MaxScmNC(&maxiScm, &maxiOutput);

if (maxiOutput.resultCode == MERR_OK)
{
 PrintSymbol("CSCM", &maxiOutput);
}
else
{
 printf("encoding error %d\n", (int)maxiOutput.resultCode);
}

4.2.4.4 Compressed Data Function

The function for dealing with UPS-compressed data is listed below. This function take its input
in a structure that contains all the required for a UPS-specific Maxicode symbol using
compressed data. This routine then automatically performs the low-level message formatting
required.

Prototypes:
#include "maxiapi.h" /* prototypes and structures */

void MaxCmpAC(MAXICOMPRESSEDINFOCPTR pCompressed, MAXIFONTOUTPTR pOutput);

Arguments:

Name Use

pInput Pointer to a MAXICOMPRESSEDINFO structure containing the input information

pOutput Pointer to a MAXIFONTOUT structure to receive the output

Return Value:
None

Example:
unsigned char upsCompressedData[64];
unsigned int upsCompressedDataLen;
MAXICOMPRESSEDINFO maxiRecord;
MAXIFONTOUT maxiOutput;

/* Use the UPS compression routines to input and compress the package */
/* data. Assume the resulting data ends up in the upsCompressedData[] */
/* array, and the byte count in the upsCompressedDataLen variable. */

/* Initialize the input record */
maxiRecord.countryCode = 840;
maxiRecord.serviceClass = 1;
strcpy(maxiRecord.postalCode, "339010000");
strcpy(maxiRecord.trackingNumber, "1Z34567890");
strcpy(maxiRecord.shipperNumber, "102562");
memcpy(maxiRecord.compressedData, upsCompressedData, upsCompressedDataLen);
maxiRecord.compressedDataLen = upsCompressedDataLen;

/* Call the encoder */
MaxCmpAC (&maxiRecord, &maxiOutput);

if (maxiOutput.resultCode == MERR_OK)
{
 PrintSymbol(&maxiOutput);

 - 59 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

}
else
{
 printf("encoding error %d\n", (int)maxiOutput.resultCode);
}

Notes:

 As of this writing, the UPS compression DLL typically returns exactly 48 bytes of data
from the compression operation.

 The postal code, country code and service class must be provided both to the UPS
compression routines and to the encoder.

4.2.5 Encoding Generic Message (Non-Structured Carrier Message) Data

Although Maxicode was designed primarily for representing Structured Carrier Message data
sets, it can be used to encode generic unstructured data as well, using modes 4 and 5, as
discussed in Internal Encoding Details on page 8. The Maxicode encoder provides four
functions to allow the creation of Maxicode symbols that do not follow the Structured Carrier
Message format. Two levels of error correction are supported – Standard Error Correction,
corresponding to Mode 4, and Extended Error Correction, corresponding to Mode 5. Extended
Error Correction provides better protection against symbol damage, at the expense of allowing
fewer characters to be encoded in a symbol. As with the Structured Carrier Message functions,
ASCII and Native versions are provided for each function.

The API functions available are as follows:
Function Error Correction Character Set

MaxSecAC Standard ASCII

MaxSecNC Standard Native

MaxEecAC Extended ASCII

MaxEecNC Extended Native

Prototypes:
#include "maxiapi.h" /* prototypes and structures */

void MaxSecAC(const char MAXIPTR *pInput, int inputLen,
 int symbolNum, int symbolCount,
 MAXIFONTOUTPTR pOutput);

void MaxSecNC(const char MAXIPTR *pInput, int inputLen,
 int symbolNum, int symbolCount,
 MAXIFONTOUTPTR pOutput);

void MaxEecAC(const char MAXIPTR *pInput, int inputLen,
 int symbolNum, int symbolCount,
 MAXIFONTOUTPTR pOutput);

void MaxEecNC(const char MAXIPTR *pInput, int inputLen,
 int symbolNum, int symbolCount,
 MAXIFONTOUTPTR pOutput);

 - 60 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Arguments:

Name Use

pInput Pointer to the data to be encoded.

inputLen Length of the data to be encoded.

symbolNum The “N” in “Symbol N of X”. If only one symbol is being generated, this should be set to 1.

symbolCount The “X” in “Symbol N of X”. If only one symbol is being generated, this should be set to 1.

pOutput Pointer to a MAXIFONTOUT structure to receive the output

Return Value:
None

Notes:

 MaxSecNC and MaxEecNC assume the contents of the input data are in the native
character set, and perform EBCDIC to ASCII conversions automatically as required.

Example (The following code segment is from the sample program CEEC):
MAXIFONTOUT maxiOutput;
char *eecMsg = "This is a message encoded using mode 5 (EEC).";

/* Call the encoder */
MaxEecNC(eecMsg,
 (int)strlen(eecMsg),
 1,
 1,
 &maxiOutput);

if (maxiOutput.resultCode == MERR_OK)
{
 PrintSymbol("CEEC", &maxiOutput);
}
else
{
 printf("encoding error %d\n", (int)maxiOutput.resultCode);
}

4.3 Visual Basic Language API

4.3.1 Initialization

Before any of the encoding API functions are called, the encoder may be initialized. This
process is typically not necessary in a Windows environment, since no EBCDIC-to-ASCII
conversion issues are involved.

 - 61 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Prototype:
Private Declare Sub MaxInitC Lib "maxicode2011.dll"
 (ByRef mxInput As MaxiInitInput)

Return Value:
None

Notes:

 This function does not need to be called before every symbol encoded. It only needs to
be called once as part of program initialization.

 If this function is not called, the default values indicated below are used. These default
values are generally appropriate for a Windows environment.

The structure used by this function has the following definition:
Private Type MaxiInitInput
 noHexChar as Byte
 loHexChar as Byte
 hiHexChar as Byte
 twoHexChar as Byte
 padChar as Byte
 bullChar as Byte
End Type

The elements of this structure are as follows:
Element Contents

noHexChar The “full width blank” character.

lohexChar The character containing the second row hexagon.

hiHexChar The character containing the first row hexagon.

twoHexChar The character containing both hexagons.

padChar The “narrow blank” character.

bullChar The character containing the bullseye character.

Default values output by the encoder (in hexadecimal) are:
Element ASCII

noHexChar 0x30

loHexChar 0x31

hiHexChar 0x32

twoHexChar 0x33

padChar 0x34

bullChar 0x35

 - 62 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

4.3.2 Result Codes

The Maxicode encoder API functions indicate success or failure with a return code of type
MAXIERROR. The following return codes are defined:

Value Meaning

0 Success

1 An invalid parameter was passed. This rarely occurs in a Visual Basic program.

2 The data passed would not fit in a single Maxicode symbol.

3 The postal code was invalid. Possible causes include:

 The postal code is longer than 9 digits, or 6 alphanumeric characters

 The postal code contains characters other than digits and upper-case alphabetic characters

For country code 840 (USA), the postal code is neither 5 nor 9 characters in length

4 The country code was invalid. Possible causes include:

 The country code was longer than three digits (string) or greater than 999.

5 The service class was invalid. Possible causes include:

 The service class was longer than three digits (string) or greater than 999.

6 The tracking number field of the UPS structure was invalid (wrong length)

7 The address validation field of the UPS structure was invalid. Valid values are True or False

8 The shipToState field of the UPS structure was invalid. It must be either empty or two characters in
length.

9 The package number and package count fields are incorrect or inconsistent. Possible causes include:

 One of the fields is zero and the other is not

 The package number is greater than the package count

10 The symbol number or symbol count fields are incorrect or inconsistent. Possible causes include:

One of the fields is less than 1 or greater than 8.

The symbol number is larger than the symbol count

11 The weight is invalid. Typically caused by a weight greater than 999.9 pounds.

In addition to these values, a number of “internal” error codes are defined. All these have a
value of 100 or greater. Should you encounter an internal error code, please note the code and
contact Silver Bay Software LLC technical support.

Note that the degree to which the encoder API validates postal codes, country codes and service
classes is limited to ensuring that the data passed can be encoded into a Maxicode label (i.e. is
the correct length, and is of the correct type – digits or alphanumeric). The encoder has no way
to ensure that the actual data is valid.

 - 63 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

4.3.3 Data Structures

This section describes the various user defined types used for input and output with the encoder
library.

4.3.3.1 Output Structure

All the Maxicode encoder API functions return their output in a structure of the following form:
Private Type MaxicodeOutput
 resultCode As Integer
 outputLine(16) As String
End Type

The elements of this structure are as follows:

Element Contents

output This is the output data. This area consists of 17 strings of 30 characters.

resultCode This code indicates the success or failure of the operation. See Result Codes on page 63 for
a description of the values.

4.3.3.2 UPS-Specific Input Structure

The following structure is used as input to the UPS-specific encoder routines documented on
page 68:

Private Type MaxicodeInput
 countryCode As Long
 serviceClass As Long
 julianDayOfPickup As Long
 packageNumber As Long
 packageCount As Long
 packageWeight As Long
 postalCode As String
 trackingNumber As String
 shipperNumber As String
 shipmentID As String
 shipToAddress As String
 shipToCity As String
 shipToState As String
 addressValidation As Boolean
 modeControl As String
End Type

The mandatory elements of this structure are as follows:

Element Contents

countryCode The country code for the destination country.
(USA’s country code is 840)

serviceClass The “class of service” code assigned by UPS.

 - 64 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

postalCode The destination postal code represented as a string. For all-numeric postal codes,
this may be up to nine digits.

If the country code is set to 840 (USA), this field must be numeric and exactly 5 or 9
digits in length.

For postal codes containing alphabetic characters (which must be in upper case), the
limit is six characters.

trackingNumber The 10-character UPS tracking number for the item.

The optional elements of the structure are shown below. To omit a numeric item, set it to zero.
To omit a string item, pass an empty string.

Element Max Len Contents

julianDayOfPickup N/A The numeric day of the year in which the package was picked up.
(Jan 1 = 1, Jan 31 = 31, Feb 1 = 32, Feb 28 = 57, etc)

packageNumber N/A The “N” in “Package N of X”

packageCount N/A The “X” in “Package N of X”

packageWeight N/A The weight of the package in tenths of a pound. Thus, a 5-pound
package would have the value 50.

shipperNumber 6 The UPS-assigned number for the shipper (String)

shipmentID 30 The shipper-assigned identification number for the shipment
(String, up to 30 characters)

shipToAddress 35 The destination street address (String, up to 35 characters)

shipToCity 35 The destination city (String, up to 35 characters)

shipToState 2 The destination state abbreviation (2 character string)

addressValidation N/A True or False

modeControl 1 Encoder mode control

This field is new in the Version 2.1.x encoder. It has the
following defined values:

"0" Use the AIM-standard algorithm to automatically
determine the encoding mode.

"1" Use the alternate UPS algorithm to automatically
determine the encoding mode.

"2" Force the encoder to use Mode 2 to encode the symbol.

"3" Force the encoder to use Mode 3 to encode the symbol.

See the section entitled Maxicode Encoding Modes on page 10
for more details.

NOTE: If all the information listed in these tables is provided for an individual package, it is
quite possible that the data will not fit into a single symbol. After encoding the message header,
mandatory information, and the message terminator, a Maxicode symbol only has space for a
maximum of 53 characters of optional information. This includes the GS characters separating
the fields. As a result, a single symbol can hold only a maximum of 43 characters of optional
information.

 - 65 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Input parameter validation is limited to ensuring that the data passed in will fit within a
Maxicode barcode. The data tests are thus typically limited to ensuring that individual fields are
not too big to encode.

4.3.3.3 SCM-Specific Input Structure

The following structure is used as input to the SCM encoder routines documented on page 68:
Private Type MaxicodeScmInput
 symbolNum As Long
 symbolCount As Long
 countryCode As Long
 serviceClass As Long
 postalCode As String
 secondaryMsg As String
 modeControl As String
End Type

The elements of this structure are as follows:

Element Max Len Contents

symbolNum N/A The “N” in “Symbol N of X”. If only one symbol is being generated,
this should be set to 1.

symbolCount N/A The “X” in “Symbol N of X”. If only one symbol is being generated,
this should be set to 1.

postalCode 9 The destination postal code represented as a string. For all-numeric
postal codes, this may be up to nine digits.

If the country code is set to 840 (USA), this field must be exactly 5 or
9 digits in length.

For postal codes containing alphabetic characters (which must be in
upper case), the limit is six characters.

countryCode N/A The destination country code (USA = 840)

serviceClass N/A The class of service being used.

secondaryMsg 126 The secondary message field itself. For UPS applications, this field
must be formatted as described in Primary and Secondary Message
Formats on page 13.

modeControl 1 Encoder mode control

This field is new in the Version 2.1.x encoder. It has the following
defined values:

"0" Use the AIM-standard algorithm to automatically determine
the encoding mode.

"1" Use the alternate UPS algorithm to automatically determine
the encoding mode.

"2" Force the encoder to use Mode 2 to encode the symbol.

"3" Force the encoder to use Mode 3 to encode the symbol.

See the section entitled Maxicode Encoding Modes on page 10 for
more details.

NOTE: The secondary message maximum length of 126 characters applies only in the case in
which the entire secondary message is composed of digits, a situation which does not conform to
the UPS standards. This length is set to this value in order to allow the Maxicode encoder to

 - 66 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

handle all possible encoding conditions, including those for non-UPS applications. In UPS
applications, the limit is 80 characters or less.

4.3.3.4 Compressed Data Input Structure

The following structure is used as input to the SCM encoder routines documented on page 56:
Private Type MaxicodeScmInput
 countryCode As Long
 serviceClass As Long
 postalCode As String
 trackingNumber As String
 shipperNumber As String
 compressedData As String
 compressedDataLen As Long
End Type

The elements of this structure are as follows:

Element Max Len Contents

postalCode 9 The destination postal code represented as a string. For all-numeric
postal codes, this may be up to nine digits.

If the country code is set to 840 (USA), this field must be exactly 5 or
9 digits in length.

For postal codes containing alphabetic characters (which must be in
upper case), the limit is six characters.

countryCode N/A The destination country code (USA = 840)

serviceClass N/A The class of service being used.

shipperNumber 6 The UPS-assigned number for the shipper (String)

trackingNumber 10 The 10-character UPS tracking number for the item.

compressedData 52 The compressed data from the UPS proprietary compression DLL.
Typically this is 48 characters in length.

compressedDataLen N/A The number of bytes of data in the compressed string.

 - 67 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

4.3.4 Encoding Structured Carrier Message Symbols

The Maxicode encoder provides support for encoding Structured Carrier Messages in a variety of
manners:

 Via the UPS-specific function.
This is the simplest way to encode a Maxicode symbol for UPS use. All internal
formatting is handled automatically by the function.

 Via generic Structured Carrier Message (SCM) functions.
These functions are the most general purpose and powerful. They permit the generation
of Structured Message Append symbols, but require the secondary message to be
properly formatted as discussed in Primary and Secondary Message Formats on page
13. As with the string functions, these functions are not UPS-specific, but will generate
UPS-compatible output if the input is formatted properly.

 Via the “Compressed Maxicode” functions.

The API functions available are as follows:
Function Input form

MaxUpsVB UPS Structure

MaxCmpVB Compressed Data Structure

4.3.4.1 UPS-Specific Function

The UPS-specific function is listed below. This function takes its input in a structure that
contains all the mandatory and optional fields for a UPS-specific Maxicode symbol. This routine
then automatically performs the low-level message formatting required. This routine provides
the easiest-to-use method of integrating UPS Maxicode support into an application.

API:
Private Declare Sub MaxUpsVB Lib "maxicode2011.dll"
 (ByRef mxInput As MaxicodeInput, ByRef mxOutput As MaxicodeOutput)

Example:
 Dim mxInput As MaxicodeInput
 Dim mxOutput As MaxicodeOutput

 mxInput.countryCode = 840
 mxInput.serviceClass = 1
 mxInput.trackingNumber = "1Z12345670"
 mxInput.shipperNumber = "123456"
 mxInput.julianDayOfPickup = 12
 mxInput.packageCount = 1
 mxInput.packageNumber = 1
 mxInput.packageWeight = 10
 mxInput.postalCode = "339120000"
 mxInput.shipToCity = "Fort Myers"
 mxInput.shipToState = "FL"
 mxInput.addressValidation = False
 mxInput.modeControl = "0"

 Call MaxUpsVB(mxInput, mxOutput)

 If mxOutput.resultCode = 0 Then

 - 68 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

 For i = 0 To 16
 ‘Print mxOutput.outputLine(i) via the appropriate method
 Next i
 Else
 ‘an error has occurred
 End If

4.3.4.2 Generic Structured Carrier Message (SCM) Functions

The SCM function takes as its input a MaxicodeScmInput user-defined type. The contents
of this structure reflect the low-level formatting of a Structured Carrier Message in a Maxicode,
and require that the user perform the proper formatting of the Secondary Message portion of the
message. (See Primary and Secondary Message Formats on page 13). This routine also
provides support for Structured Message Append. Use this function if you are preparing a
Structured Carrier Message for a carrier other than UPS, or in situations in which it is necessary
to split a message across two or more symbols.

API:
Private Declare Sub MaxScmVB Lib "maxicode2011.dll"
 (ByRef mxInput As MaxicodeScmInput, ByRef mxOutput As MaxicodeOutput)

Notes:

 See Structured Message Append on page 78 for more detail on building Structured
Message Append symbols.

4.3.4.3 Compressed-Data Function

The Compressed Data function is listed below. This function takes its input in a structure that
contains the output from the UPS proprietary compression DLL, as well as other information that
is required to generate the Maxicode symbol. The encoder takes the data provided and performs
the low-level formatting required to produce a printable Maxicode symbol.

API:
Private Declare Sub MaxCmpVB Lib "maxicode2011.dll"
 (ByRef mxInput As MaxiCompInput, ByRef mxOutput As MaxicodeOutput)

Example:
Dim mxInput As MaxiCompInput
Dim mxOutput As MaxicodeOutput
Dim upsCompressedData as String
Dim upsCompressedDataLen as Long

’ Use the UPS compression routines to input and compress the package
’ data. Assume the resulting data ends up in the upsCompressedData
’ string, and the byte count in the upsCompressedDataLen variable.

’ Initialize the input record
mxInput.countryCode = 840
mxInput.serviceClass = 1
mxInput.postalCode = "339010000"
mxInput.trackingNumber = "1Z34567890"
mxInput.shipperNumber = "102562"
mxInput.compressedData = upsCompressedData
mxInput.compressedDataLen = upsCompressedDataLen

/* Call the encoder */

 - 69 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Call MaxCmpVB(mxInput, mxOutput);

If maxiOutput.resultCode = 0 Then

 For I = 0 to 16
 ‘Print mxOutput.outputLine(i) via the appropriate method
 Next I
Else
 ’ Handle error
End If

Notes:

 As of this writing, the UPS compression DLL typically returns exactly 48 bytes of data
from the compression operation.

 The postal code, country code and service class must be provided both to the UPS
compression routines and to the encoder.

 - 70 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

5 Printing the Maxicode Symbol
When using the Silver Bay Software Maxicode encoder, a generated Maxicode symbol is printed
using a special font. This font consists of characters representing hexagons and spaces, as well
as a character that prints the bull’s-eye at the center of the symbol. It is the responsibility of the
application programmer to generate the appropriate print stream data to invoke the font on the
printer and to send the characters returned by the encoder to the printer.

5.1 The Maxicode Font
An individual Maxicode symbol is composed of 33 rows of hexagons with the bull’s-eye pattern
in the center. The first row (and all other “odd” rows) contains 30 hexagons. The second row
(and all other “even” rows) contains 29 hexagons. Even rows are offset a half hexagon to the
right with respect to odd rows.

The Maxicode encoder generates the symbol using 17 rows of characters, 30 characters per row.
Each character represents two hexagons, one from an odd row and one from the even row below
it. The characters used are diagrammed below (not to scale):

“No Hex”
character

“Lo Hex”
character

“Hi Hex”
character

“Two Hex”
character

Bullseye
Character

Figure 6 - Contents of Custom Maxicode Font

Outlined (unfilled) hexagons in the above diagrams indicate the position of white hexes. These
areas are actually completely white in the font – there is no outline drawn. Only six code points
(characters) are defined in the Maxicode font – all other code points are unused. The fonts use
the following characters as their code points:

Character Code Point ASCII EBCDIC

No Hex '0' 0x30 0xF0

Lo Hex '1' 0x31 0xF1

Hi Hex '2' 0x32 0xF2

Two Hex '3' 0x33 0xF3

Pad '4' 0x34 0xF4

Bullseye '5' 0x35 0xF5

 - 71 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

If you were to examine the output of the Maxicode encoder, the actual character output of the
encoder looks something like this:

230303230331222231233222212222
331220321012103131311331133320
103223110030320012023121302010
222232322231222232313122132222
111230121331012200212131333030
013212320222000001013300013232
222222310000000000121202201012
120120230000000000021100222032
110020103500000000003023331130
303110011100000000101030021120
002012320020000000020110003020
222132110031322003111001301210
313310020202020202020100330130
130310213121202130311302121100
233332300112003211113112130220
111031202110230033010231310310
202002202020022020000020200200

Note there are 17 rows, 30 characters in each row. When printed using the custom Maxicode
font, the hexagons and bull’s-eye of the Maxicode symbol are printed:

5.2 Vertical Spacing
The horizontal positioning of the Maxicode characters within a single line is controlled by
information within the font. That is, as each character of a line is rendered by the printer, the
position of the adjacent character is automatically determined by the printer. However, the line-
to-line spacing must be controlled by the programmer.

Line spacing can be expressed in a couple of ways. For example, many printers use lines per
inch. The Maxicode font needs to be printed at 16.5 lines per inch. However, most printing
technologies will not let you specify 16.5 as a valid lines-per-inch setting.

The following sections provide suggestions on how to perform font selection and proper vertical
spacing in different printing environments.

5.3 Using Hewlett-Packard PCL Fonts

5.3.1 Overview

Before a Maxicode symbol can be printed on an HP-PCL printer, the custom Maxicode font must
first be installed. The distribution kit includes two HP-PCL soft fonts; one for portrait
orientation and another for landscape. Consult the platform-specific documentation that came
with your encoder for the locations and names of the font files.

 - 72 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Soft fonts are stored in the printer's RAM; thus when the printer is turned off or is reset, soft
fonts are lost and must be re-installed. We recommend that your application program download
the software before each print run. Downloading a soft font involves assigning a Font ID and
then sending the font to the printer.

Thus, the steps typically associated with using HP-PCL fonts are as follows:

Step 1: As part of the beginning of your job, include the contents of the appropriate font as part
of the binary stream sent to the printer. Typically, you will precede the font with the
HP-PCL escape sequence to assign the font an ID of your choosing. For example, if
you chose to use a font ID of 12, you would send the sequence:

E
C*cnnD (where EC is the ASCII ESC character, and nn is the

font ID)

 followed by the contents of the font. The font is binary information, so it is important
to ensure that no EBCDIC-to-ASCII conversion occurs on this data in the path between
the system and the printer.

Step 2: Map the font ID specified for the Maxicode font as the PCL secondary font
E
C)nnX (where EC is the ASCII ESC character, and nn is the

font ID)

Step 3: When it is time to print the Maxicode symbol, invoke the secondary font using the
ASCII SO (Shift Out) character.

Step 4: Print the characters associated with the Maxicode symbol. Each individual line of the
symbol must be positioned 0.060 inches below the previous line, thus achieving a
spacing of 16.66 lines per inch (since HP-PCL is based on 300dpi units, this is as close
to the nominal 16.5 LPI that can be achieved). Each individual line may be positioned
using the Horizontal Cursor Positioning and Vertical Cursor Positioning escape
sequence:

E
C*pxxxXE

C*pyyyY (where xxx and yyy are the horizontal and vertical
positions of the individual line expressed in “PCL
Units”)

 Recall that HP-PCL uses 300dpi “PCL Units” when positioning, so the yyy value will
increase by 18 for each successive line.

Step5: After the symbol has been completely printed, return to the primary font using the
ASCII SI (Shift In) character to print the remainder of the page.

There are obviously other ways that can be used to select a particular font at the appropriate
point in the print stream – the above is included as one example. Consult the PCL Printer
Language Technical Reference Manual, available from Hewlett-Packard, for more details on the
use of HP-PCL soft fonts.

Note that unless a “reset” escape sequence is sent to the printer during the print stream, it is only
necessary to download the font to the printer once at the beginning of the print job.

 - 73 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

5.3.2 C Language Example

The following code segment downloads the portrait font as soft font number 100 (any number
between 1 and 32767 can be used). This code fragment assumes that fpPrinter is the
previously opened output stream:

 char buffer[1024];
 FILE *fpPrinter
 FILE *fpFont;
 int nChars;

 ...

 /* Select font ID 100 */
 fprintf(fpPrinter, "\033*c100D");

 /* Open the MAXICODE font file */
 fpFont = fopen("MAXHP3P", "r");

 /* Copy the file to our output (the printer) */
 for(;;)
 {
 nChars = fread(buffer, 1, sizeof(buffer), fpFont);
 if (nChars == 0)
 break;
 fwrite(buffer, 1, nChars, fpPrinter);
 }
 fclose(fpFont);

 /* Make the font permanent so printer reset leaves it alone */
 fprintf(fpPrinter, "\033*c100d5F");

 /* Set the font as secondary */
 fprintf(fpPrinter, "\033)100X");

This sample makes the font “permanent” so that if a printer reset is issued (ECE) the font will
remain in printer memory. We also make the font the secondary font in the printer; this way the
Maxicode font can be easily selected by issuing an SO character; the primary font can then be
restored by issuing an SI character. As mentioned earlier, this is only one mechanism for
selecting fonts; refer to your HP PCL Reference manual for additional information regarding
font selection.

Once the font has been loaded, the steps to printing the Maxicode symbol are as follows:

1. Activate the Maxicode font.

2. Loop through the 17 lines of output characters, setting the print position for each line and
then sending the characters.

3. Switch back to the primary font.

The following code segment demonstrates this. Since HP soft fonts are 300 dpi fonts, a line
spacing of 18 pixels is used (1 = 300 dots; 300 / 16.5 = 18.18):

 - 74 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

 #define ASCII_SI 15 /* select primary font */
 #define ASCII_SO 14 /* select secondary font */

 long hPos;
 long vPos;
 int row;
 MAXIFONTOUT maxiOutput;

 ...

 /* do the encode here */

 ...

 /* Print symbol 3 inches in, 2 inches down (at 300 DPI) */
 hPos = 900;
 vPos = 600;

 /* Invoke the secondary (Maxicode font) */
 fputc(ASCII_SO, fpPrinter);

 for (row = 0;
 row < sizeof(maxiOutput.output)/sizeof(maxiOutput.output[0]);
 row++)
 {
 /* Set the print position */
 fprintf(fpPrinter,
 "\033*p%dX\033*p%dY",
 hPos,
 vPos);

 /* Print a line of characters */
 fwrite(maxiOutput.output[row],
 1,
 sizeof(maxiOutput.output[row]),
 fpPrinter);

 /* Increment the vertical line position */
 vPos += 18;

}

/* Return to the primary font */
fputc(ASCII_SI, fpPrinter);

The important thing to note from this example is that each line of the encoder's output is
positioned before it is sent to the printer. All of the lines are in the same column on the printer
(hPos in the example; 900 pixels, or 3 inches). However, the row at which each line is printed
(vPos) is 18 pixels down from the previous line. Thus the first line is positioned at pixel 600, the
second at 618, the third at 636, and so on.

5.4 Using AFP PAGEDEFs
When printing a Maxicode symbol using an AFP printer, the Maxicode font must be installed on
the printer or made available as a printing resource to PSF. The exact procedure for
accomplishing this is based on your site's configuration. Consult with your system administrator
for details on how the font was installed.

 - 75 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

Using AFP, font selection and line-to-line spacing is usually controlled from within the Page
Definition (PAGEDEF) file. The following is a fragment from a sample PAGEDEF file for a
240 DPI printer. The sample assumes that:

 The Maxicode font has been assigned a logical font name of “MAXIFONT”.

 The Maxicode data is being printed on ANSI channel 2.

 The symbol is to be positioned 3.75” (900 pels) from the left edge of the page and 5”
(1200 pels) from the top of the page.

 The Maxicode output has been directed to channel 2 by the application program.
SETUNITS 1 PELS 1 PELS LINESP 14 PELS;

PRINTLINE REPEAT 17
 POSITION 900 1200
 FONT MAXIFONT
 CHANNEL 2;

This same page definition will work for a 300 DPI printer, except the “SETUNITS” line would
need to be changed to 18 pels:

SETUNITS 1 PELS 1 PELS LINESP 18 PELS;

5.5 Xerox Printing
When printing a Maxicode symbol using a Xerox printer, the Maxicode font must be installed on
the printer. Both the 9700 series and 5-word fonts have been provided on Xerox formatted
media. Be sure to install the correct fonts for your printer model. However, installing these
fonts on your specific Xerox printer is beyond the scope of this document. The following tables
lists the fonts provided (NOTE: there may be additional, unrelated fonts on the disk provided):

Font Series Fonts

5-word font family X5PMAX, X5LMAX

9700 font family X9PMAX, X9LMAX

When defining the Maxicode font in your JSL it is not strictly necessary to provided line spacing
information (as the font has been setup up with the correct spacing). However, if you are
accustomed to using line spacing for your font declarations, the Maxicode fonts use a line
spacing of 16.66 lines per inch.

To print the symbol using Metacode commands, each line must be positioned as it is printed.
Each of the 17 lines of output must be printed by sending the vertical position, horizontal
position, font selection, the 30 characters comprising the line, and the terminate command. A
line spacing of 16.66 lines per inch (18 pixels) is used for the Maxicode font (Xerox printer
positioning is based on 300 DPI, regardless of the printer's resolution).

5.6 Using AS/400 DDS
As mentioned at the beginning of this section, the Maxicode symbol must be printed at 16.5 lines
per inch. Unfortunately, this is not a valid value for a DDS. Therefore, in order to print a
Maxicode symbol using a DDS, the 17 lines of encoder output must be individual placed on the

 - 76 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

page using the POSITION function. NOTE: this requires that the printer file be created with
DEVTYPE(*AFPDS).

Consider the following DDS fragment:
A R MAXIOUT ENDPAGE
A CDEFNT(X0MAXI3A)
A MAXI01 30A POSITION(1.700 1.35)
A MAXI02 30A POSITION(1.761 1.35)
A MAXI03 30A POSITION(1.821 1.35)
A MAXI04 30A POSITION(1.882 1.35)
A MAXI05 30A POSITION(1.942 1.35)
A MAXI06 30A POSITION(2.003 1.35)
A MAXI07 30A POSITION(2.064 1.35)
A MAXI08 30A POSITION(2.124 1.35)
A MAXI09 30A POSITION(2.185 1.35)
A MAXI10 30A POSITION(2.245 1.35)
A MAXI11 30A POSITION(2.306 1.35)
A MAXI12 30A POSITION(2.367 1.35)
A MAXI13 30A POSITION(2.427 1.35)
A MAXI14 30A POSITION(2.488 1.35)
A MAXI15 30A POSITION(2.549 1.35)
A MAXI16 30A POSITION(2.609 1.35)
A MAXI17 30A POSITION(2.670 1.35)

This DDS prints the Maxicode symbol with its upper left corner 1.70 inches down and 1.35
inches in on a page. Each of the successive 16 lines of output is manually positioned 0.0606
inches lower that the previous one (16.5 lines per inch, rounded to the nearest thousandth of an
inch).

The CDEFNT function selects the font – in this case the X0MAXI3A font. The X0MAXI3A font
is for use with 300, 600, and 1200 DPI page printers. If your printer is a 240 DPI printer, use the
X0MAXI2A font.

 - 77 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

6 Appendix

6.1 Structured Message Append
When using Structured Message Append to generate a set of two or more symbols containing a
single long message, the following rules apply:

1. For Structured Carrier Message symbols, all the symbols in the set must have the same
Primary Message data (postal code, country code and service class). The overall
secondary message must be formatted as shown in Primary and Secondary Message
Formats on page 13, but then may be divided across the symbols at any point that is
convenient. The decoder will automatically combine the secondary message from the
symbol set during the decode process.

2. For Generic Data Messages (mode 4 or 5) the message may be broken at any convenient
point.

Thus, suppose the following message were being encoded:
[)>RS01

G
S96339010000

G
S840

G
S001

G
S1Z12345678

G
SUPSN

G
S06X610

G
S159

G
S1234567

G
S

 1/2GS3.1
G
SY

G
S2201 SECOND ST, SUITE 600

G
SFT MYERS

G
SFL

R
S
E
OT

According to the rules in Primary and Secondary Message Formats on page 13, the postal
code, country code and class of service are removed when constructing the secondary message.
Thus, the resulting secondary message is:

[)>RS01
G
S961Z12345678

G
SUPSN

G
S06X610

G
S159

G
S1234567

G
S1/2

G
S3.1

G
SY

G
S

 2201^SECOND^ST,^SUITE^600GSFT^MYERS
G
SFL

R
S
E
OT

(For readability, caret characters (‘^’) have been inserted where spaces would normally go.) At
93 characters, this secondary message is too long to fit in a single symbol. To encode this into a
pair of symbols, the appropriate SCM function could be called twice, once to generate a first
symbol and once to generate a second symbol.

In this case, the parameters passed to the SCM function would be:

Structure Element Symbol 1 Symbol 2

symbolNum 1 2

symbolCount 2 2

postalCodeLen 9 9

postalCode “339010000” “339010000”

countryCode 840 840

serviceClass 001 001

secondaryMsgLen 48 45

secondaryMsg [)>RS01GS961Z12345678GSUPSNGS0
6X610GS159GS1234567GS1/2GS

3.1GSYGS2201^SECOND^ST,^SUITE^
600GSFT^MYERSGSFLRSEOT

Note that, as stated before, the segmentation of the secondary message is arbitrary. Note also
that, although the primary message information is repeated between the first and second symbol,

 - 78 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

 - 79 -

the Structured Carrier Message header string ([)>RS01GS96) is not repeated in Symbol 2’s
secondary message.

6.2 Font Initialization Values
The Maxicode Encoder is shipped with all available printer fonts. Supported platforms include
IBM AFP, Xerox, and Hewlett-Packard PCL compatible printers.

The tables on the following pages list various combinations of the supported platforms, printers
and interconnect methods. The tables provide two key pieces of information: the name of the
font(s), and the code points to use with the encoder. The code points are the characters that must
be output by the encoder for it to work successfully with the font, assuming that no other
character conversion is applied by the application programmer. Refer to the MaxInitC (for C
programming) or MAXINIT (for COBOL programming) section for more information on setting
the code points. Failure to set the code points properly in the program can cause unpredictable
output and can even cause printer reboots.

The information has been broken into two tables; one for UNIX and PC Platforms (ASCII
platforms) and a second for IBM S/370, S/390, and AS/400 systems (EBCDIC platforms).

The code point values are provided in hexadecimal and are listed in the order required by the
initialization function (No Hex, Lo Hex, Hi Hex, Two Hex, Pad, Bullseye).

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

UNIX and PC Platforms

Printer Family Attached Via DPI Portrait Font(s) Landscape Font(s) Code Points (in HEX)

IBM AFP No PSF 240 X0MAXI2A X0MAXI2A 30, 31, 32, 33, 34, 35

IBM AFP No PSF 300 X0MAXI3A X0MAXI3A 30, 31, 32, 33, 34, 35

IBM AFP Using PSF 240 X0MAXI2A X0MAXI2A F0, F1, F2, F3, F4, F5

BM AFP Using PSF 300 X0MAXI3A X0MAXI3A F0, F1, F2, F3, F4, F5

Xerox Direct 300 X5PMAX, X9PMAX X5LMAX, X9LMAX 30, 31, 32, 33, 34, 35

HP PCL Direct 300 MAXHP3P MAXHP3L 30, 31, 32, 33, 34, 35

IBM S/370, S/390, AS/400

Printer Family Attached Via DPI Portrait Font(s) Landscape Font(s) Code Points (in HEX)

IBM AFP Channel 240 X0MAXI2A X0MAXI2A F0, F1, F2, F3, F4, F5

IBM AFP Channel 300 X0MAXI3A X0MAXI3A F0, F1, F2, F3, F4, F5

IBM AFP Network via US Robotics modem 240 X0MAXI2A X0MAXI2A F0, F1, F2, F3, F4, F5

IBM AFP Network via US Robotics modem 300 X0MAXI3A X0MAXI3A F0, F1, F2, F3, F4, F5

IBM AFP LAN 240 X0MAXI2A X0MAXI2A 30, 31, 32, 33, 34, 35

IBM AFP LAN 300 X0MAXI3A X0MAXI3A 30, 31, 32, 33, 34, 35

IBM AFP Agile box, using DSC character set 240 X0MAXI2B X0MAXI2B F0, F1, F2, F3, F5, F7

IBM AFP Agile box, using DSC character set 300 X0MAXI2B X0MAXI2B F0, F1, F2, F3, F5, F7

IBM AFP Agile box, using SCS character set 240 X0MAXI2A X0MAXI2A 20, 21, 22, 23, 24, 25

IBM AFP Agile box, using SCS character set 300 X0MAXI3A X0MAXI3A 20, 21, 22, 23, 24, 25

IBM AFP Agile box, using DSC APL character set 240 X0MAXI2B X0MAXI2B 32, 30, 0C, 14, 33, 22

IBM AFP Agile box, using DSC APL character set 300 X0MAXI2B X0MAXI2B 32, 30, 0C, 14, 33, 22

IBM AFP Agile box, using SCS APL character set 240 X0MAXI2A X0MAXI2A 30, 31, 32, 33, 34, 35

IBM AFP Agile box, using SCS APL character set 300 X0MAXI3A X0MAXI3A 30, 31, 32, 33, 34, 35

 - 80 -

Silver Bay Software LLC Maxicode Encoder Programmer’s Manual

 - 81 -

Printer Family Attached Via DPI Portrait Font(s) Landscape Font(s) Code Points (in HEX)

Xerox Channel 300 X5PMAX, X9PMAX X5LMAX, X9LMAX F0, F1, F2, F3, F4, F5

Xerox Channel 600 X5PMAX, X9PMAX X5LMAX, X9LMAX F0, F1, F2, F3, F4, F5

Xerox Network via US Robotics modem 300 X5PMAX, X9PMAX X5LMAX, X9LMAX 30, 31, 32, 33, 34, 35

Xerox Network via US Robotics modem 600 X5PMAX, X9PMAX X5LMAX, X9LMAX 30, 31, 32, 33, 34, 35

Xerox Agile box, using DSC character set 300 X5PMAX, X9PMAX X5LMAX, X9LMAX 20, 21, 22, 23, 24, 25

Xerox Agile box, using DSC character set 600 X5PMAX, X9PMAX X5LMAX, X9LMAX 20, 21, 22, 23, 24, 25

Xerox Agile box, using SCS character set 300 X5PMAX, X9PMAX X5LMAX, X9LMAX F0, F1, F2, F3, F4, F5

Xerox Agile box, using SCS character set 600 X5PMAX, X9PMAX X5LMAX, X9LMAX F0, F1, F2, F3, F4, F5

Xerox Agile box, using DSC APL character set 300 X5PMAX, X9PMAX X5LMAX, X9LMAX 45, 46, 47, 48, 49, 4A

Xerox Agile box, using DSC APL character set 600 X5PMAX, X9PMAX X5LMAX, X9LMAX 45, 46, 47, 48, 49, 4A

Xerox Agile box, using SCS APL character set 300 X5PMAX, X9PMAX X5LMAX, X9LMAX 8F, 90, 9A, 9B, 9D

Xerox Agile box, using SCS APL character set 600 X5PMAX, X9PMAX X5LMAX, X9LMAX 8F, 90, 9A, 9B, 9D

	1 Introduction
	1.1 Contents of this Manual
	1.2 Maxicode Symbology Overview
	1.3 Encoder Operation
	1.3.1 Data Inputs
	1.3.2 Encoder Output

	1.4 Steps to Using the Encoder
	1.5 API’s Provided
	1.6 Character Set Issues

	2 Maxicode Symbology Technical Details
	2.1 Physical Structure
	2.2 Historical Overview
	2.3 Internal Encoding Details
	2.4 Maxicode Encoding Modes
	2.5 Maxicode in United Parcel Service (UPS) Applications
	2.5.1 Structured Carrier Message Format
	2.5.2 Primary and Secondary Message Formats
	2.5.3 Compressed Maxicode Format

	3 Using the Encoder for UPS Applications
	3.1 COBOL Language API
	3.1.1 Initializing the Encoder: MAXINIT
	3.1.2 Calling the Encoder: MAXUPSN

	3.2 C Language API
	3.2.1 Initializing the Encoder: MaxInitC
	3.2.2 Calling the Encoder: MaxUpsNC

	3.3 Visual Basic API

	4 Generic Maxicode API’s
	4.1 COBOL Language API
	4.1.1 Initialization
	4.1.2 Result Codes
	4.1.3 Record Formats
	4.1.3.1 Output Record
	4.1.3.2 UPS-Specific Input Record Format
	4.1.3.3 SCM-Specific Input Record Format
	4.1.3.4 Pre-Formatted String Input Record Format

	4.1.4 Encoding Structured Carrier Message Symbols
	4.1.4.1 UPS Functions
	4.1.4.2 String Functions
	4.1.4.3 Generic Structured Carrier Message (SCM) Functions

	4.1.5 Encoding Generic Message (Non-Structured Carrier Message) Data

	4.2 C Language API
	4.2.1 Initialization
	4.2.2 Result Codes
	4.2.3 Data Structures
	4.2.3.1 Output Structure
	4.2.3.2 UPS-Specific Input Structure
	4.2.3.3 SCM-Specific Input Structure

	4.2.4 Encoding Structured Carrier Message Symbols
	4.2.4.1 UPS-Specific Functions
	4.2.4.2 String Functions
	4.2.4.3 Generic Structured Carrier Message (SCM) Functions
	4.2.4.4 Compressed Data Function

	4.2.5 Encoding Generic Message (Non-Structured Carrier Message) Data

	4.3 Visual Basic Language API
	4.3.1 Initialization
	4.3.2 Result Codes
	4.3.3 Data Structures
	4.3.3.1 Output Structure
	4.3.3.2 UPS-Specific Input Structure
	4.3.3.3 SCM-Specific Input Structure
	4.3.3.4 Compressed Data Input Structure

	4.3.4 Encoding Structured Carrier Message Symbols
	4.3.4.1 UPS-Specific Function
	4.3.4.2 Generic Structured Carrier Message (SCM) Functions
	4.3.4.3 Compressed-Data Function

	5 Printing the Maxicode Symbol
	5.1 The Maxicode Font
	5.2 Vertical Spacing
	5.3 Using Hewlett-Packard PCL Fonts
	5.3.1 Overview
	5.3.2 C Language Example

	5.4 Using AFP PAGEDEFs
	5.5 Xerox Printing
	5.6 Using AS/400 DDS

	6 Appendix
	6.1 Structured Message Append
	6.2 Font Initialization Values

