

PDF417 Encoder
Version 2.2.1

Programmer’s Manual

Silver Bay Software LLC
100 Adams Street

Dunstable, MA 01827
Phone: (800) 364-2889

Fax: (888) 315-9608
support@silverbaysoftware.com

Document Version 20091018

The information in this manual is subject to change without notice and should not be construed
as a commitment by Silver Bay Software LLC. Silver Bay Software assumes no responsibility
for any errors that might appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

Products or brand names used herein are trademarks or registered trademarks of their respective
companies

Copyright © 2009, Silver Bay Software LLC.
All rights reserved.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

 - i -

Table of Contents
1 INTRODUCTION .. 1

1.1 CONTENTS OF THIS MANUAL ... 1
1.2 BASIC FEATURES OF THE ENCODER ... 1

2 PDF417 SYMBOLOGY OVERVIEW ... 3
2.1 ANATOMY OF A PDF417 SYMBOL ... 3

2.1.1 Symbol Rows .. 3
2.1.2 Modules ... 4
2.1.3 Codewords ... 4
2.1.4 Start Pattern, Stop Pattern and Row Indicators .. 6

2.2 PDF417 SYMBOL SIZE .. 7
2.2.1 Calculating the Size of a Particular Symbol .. 7
2.2.2 Determining Symbol Size from a Given Area .. 8
2.2.3 Module Size .. 8

2.3 ERROR CORRECTION ... 9
2.4 TRUNCATED OR COMPACT PDF417 .. 10
2.5 CHARACTER SET ISSUES .. 10

3 CONTROLLING THE GENERATION OF A PDF417 SYMBOL ... 11
3.1 CONTROLLING THE INTERNAL ENCODING METHOD .. 11

3.1.1 Binary Mode .. 11
3.1.2 Optimized Mode ... 11

3.2 CONTROLLING PDF SYMBOL SIZE .. 12
3.2.1 Module Size - Font Rendering ... 12
3.2.2 Module Size - Graphics Rendering .. 12
3.2.3 Quiet Zones .. 13
3.2.4 Row and Column Control .. 14
3.2.5 Aspect Ratio Control .. 14
3.2.6 Error Correction Parameters .. 15

3.3 INPUT DATA FORMAT .. 16
3.4 DEFAULT PARAMETERS ... 16

4 USING THE PDF417 ENCODER WITH THE C LANGUAGE ... 18
4.1 ENCODER OPERATION ... 18

4.1.1 Encoder Input and Output ... 18
4.1.2 Font Rendering .. 18
4.1.3 Overview of the Encode Process .. 19

4.2 ALLOCATING WORKING MEMORY .. 20
4.3 INITIALIZE WORKING MEMORY .. 20
4.4 SET ENCODER PARAMETERS ... 21
4.5 ENCODING DATA ... 21
4.6 ERROR CORRECTION AND RETRIEVAL OF SYMBOL DATA ... 22
4.7 RENDERING THE SYMBOL .. 22
4.8 PRINTING THE SYMBOL ... 23
4.9 RESULT CODES .. 23

5 C LANGUAGE API FUNCTIONS .. 24
5.1 INITIALIZATION PROCESS .. 24

5.1.1 PdfInit .. 24
5.1.2 PdfClear: ... 26
5.1.3 PdfGenParamSet: .. 27
5.1.4 PdfGenParamGet: ... 30
5.1.5 PdfAspectRatioSet: .. 31

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

 - ii -

5.1.6 PdfAspectRatioGet: ... 33
5.2 ENCODING PROCESS .. 33

5.2.1 PdfEncodeOptimal ... 33
5.2.2 PdfEncodeBinary: .. 35
5.2.3 PdfRetrieveSymbol: ... 36

5.3 RENDERING PROCESS .. 37
5.4 RENDERING CALLBACK ROUTINES .. 38

5.4.1 Output Callback Functions .. 38
5.4.2 PdfSinkMemory .. 39
5.4.3 PdfSinkStream .. 40
5.4.4 PdfSinkFd .. 41

5.5 DEVICE-INDEPENDENT BITMAP RENDERING ROUTINES .. 42
5.5.1 PdfDIBQuery ... 42
5.5.2 PdfDIBRender: .. 44

5.6 TAGGED IMAGE FILE FORMAT (TIFF) RENDERING ROUTINES .. 46
5.6.1 PdfTIFFQuery: .. 46
5.6.2 PdfTIFFRender: .. 47

5.7 FONT BASED RENDERING ROUTINES ... 49
5.7.1 PdfFontInitRender ... 49
5.7.2 PdfFontRender: ... 50

5.8 EBCDIC-TO-ASCII AND UTILITY ROUTINES.. 53
5.8.1 PdfEtoA .. 53
5.8.2 PdfSet ... 54

6 COBOL LANGUAGE API ... 55
6.1.1 Overview of the Encode Process .. 55
6.1.2 Font Information Initialization .. 55
6.1.3 Encoder Parameters Initialization ... 56
6.1.4 COBOL Output record Initialization ... 58
6.1.5 Encoding Data ... 60
6.1.6 Printing the Symbol ... 61
6.1.7 Result Codes .. 61

7 COBOL LANGUAGE API FUNCTIONS ... 62
7.1.1 PDFINITF.. 62
7.1.2 PDFENCOD .. 65

8 USING THE PDF417 ENCODER WITH OTHER LANGUAGES .. 69
8.1 RPG .. 69
8.2 OTHER LANGUAGES .. 69

9 FONT AND PRINTING-RELATED INFORMATION ... 70
9.1 PDF417 FONT BASICS ... 70
9.2 THE CHARACTER SET .. 70
9.3 MODULE SIZE .. 72
9.4 FONT METRICS .. 72

9.4.1 AFP Fonts .. 73
9.4.2 HP PCL Fonts .. 73
9.4.3 Xerox Fonts .. 74

9.5 IBM ADVANCED FUNCTIONAL PRINTING (AFP) ... 76
9.6 XEROX METACODE/JSL .. 76
9.7 HEWLETT-PACKARD PRINTER CONTROL LANGUAGE (HP-PCL) ... 76
9.8 AS/400 DDS ... 78

10 APPENDIX ... 79
10.1 API RETURN VALUES .. 79

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

 - iii -

10.2 SYMBOLOGY TECHNICAL SUMMARY .. 81
10.3 FONT INITIALIZATION VALUES .. 82

PDF417 Encoder
Version 2.2.1

Programmer’s Manual

1 Introduction

1.1 Contents of this Manual
This manual is broken into four sections:

• an introduction, ,

• an overview of the PDF417 symbology,

• a programmer’s reference describing the API’s, and

• a printing guide.
The introduction provides a quick overview of the PDF417 symbol and a general discussion on
how to program with the Silver Bay Software LLC PDF417 encoder. The symbology overview
describes how a PDF417 barcode is constructed, and provides information on how to get the
barcode sized appropriately. The programmer’s reference section provides the specific details of
the API’s for each of the supported programming languages. Finally, the printing section
provides guidelines for formatting the output of the encoder in a variety of print environments,
including AFP, Metacode, and HP-PCL.

1.2 Basic Features of the Encoder
The Silver Bay Software PDF417 encoder is designed to make it easy and straightforward to
convert binary or ASCII data into a printable PDF417 symbol. The encoder offers the following
features:

• Control of the minimum and maximum physical dimensions of the symbol to be
generated.

• Control over the amount of error correction applied to the symbol.

• Choice between two encoding modes:
o A binary mode, which is faster, but will tend to produce a slightly larger barcode.

o An “optimized” mode, which will produce the smallest-possible symbol, at the
cost of some additional processing time.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 2 -

In addition, to be compatible with as many different computer and printing environments as
possible, the encoder offers two different means via which the actual barcode is returned to the
application programmer:

• All the API’s offer “font rendering.” In this mode, the output of the encoder is a
rectangular array of characters which, when printed with one of the supplied custom
fonts, will resulting in the image of the PDF417 symbol.

• The C language API also offers direct graphics rendering, in which a bitmap of the
PDF417 symbol can be returned in one of the following bitmap formats:

o Microsoft Windows Bitmap (BMP) format

o Tagged Image File Format (TIFF)

If font rendering is being used, the basic steps for using the encoder are as follows:

1. Based on the type of printer being used, and the method via which it is connected to the
computer, make the custom PDF417 font available to the printer.

2. If necessary, call the encoder initialization function with the correct character values.
The values you use are based on your specific printing configuration. In most cases, this
step is optional.

3. For each PDF417 symbol to be printed:

a. Place the data to be encoded into one of the structure or record formats supported by
the API functions.

b. Call the appropriate encoder API.

c. Check the return code to ensure that the encode operation succeeded.

d. Send the appropriate command to invoke the PDF417 font on your printer.

e. Send the characters returned by the encoder to the printer.

f. Return the printer to the “normal” font.

For graphics rendering, the process is similar:

1. For each PDF417 symbol to be printed:

a. Place the data to be encoded into one of the structure or record formats supported by
the API functions.

b. Call the appropriate encoder API.

c. Check the return code to ensure that the encode operation succeeded.

d. Call the appropriate rendering function to obtain the output graphic.

e. Send the graphic to the printer.

A number of sample programs have been provided with the distribution media as well,
demonstrating the use of the PDF417 encoder.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 3 -

2 PDF417 Symbology Overview
Portable Data File 417, or PDF417, is a multi-row, variable-length symbology offering high data
capacity and error-correction capability for real-world applications where portions of symbols
can get destroyed in handling. PDF417 symbols can be scanned by linear scanners, raster laser
scanners, or two-dimensional imaging devices. In 1994, AIM USA, an affiliate of AIM
International, standardized PDF417 in its "Uniform Symbology Specification – PDF417".

Figure 1 - Sample PDF417 Symbol

2.1 Anatomy of a PDF417 Symbol
In order to fully understand the process of controlling the size of PDF417 symbols, it is
necessary to delve into the internal terminology used to describe the symbology itself, and the
physical anatomy of the symbol.

2.1.1 Symbol Rows
Inspected closely, a PDF417 symbol looks like a set of stacked one-dimensional bar codes. Each
of these is referred to as a row. Each individual row is relatively small, and consists of
individual bars and spaces. Figure 2 shows the first three rows of the symbol from Figure 1,
separated so that they can be more easily seen.

Figure 2 - Individual Rows of a PDF417 Symbol

If we “zoom in” on the barcode, as shown in Figure 3, we can easily see the individual rows, and
the bars and spaces that make them up.

Figure 3 - Magnified Portion of PDF417 Symbol

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 4 -

2.1.2 Modules
In the first and third rows Figure 3, it is fairly easy to see the smallest black and white rectangles
that are used in making up this particular barcode. It may not be quite as obvious that all of the
bars and spaces, including the wider ones, are actually composed of multiple rectangles, all of
which are the same size. Figure 4 shows the magnified portion of the barcode again, but this
time with the individual rectangles outlined. As you can see, what appear to be wide or narrow
white or black areas in the barcode are actually composed of multiple, adjacent rectangles of the
same color.

Figure 4 - Individual Modules in a PDF417 Symbol

These individual rectangles are referred to as modules. They represent the smallest unit of print
in a PDF417 symbol. Each individual row in the PDF417 symbol is the height of a single
module, so the height of the overall symbol is the number of rows times the module height.

2.1.3 Codewords
Within the PDF417 symbol, modules are organized in groups of 17. Each group of 17 modules
is referred to as a codeword. Codewords always start with at least one black module, and always
end with at least one white module, and there are always exactly four “bars” and four “spaces”
(each of which is made up of one or more modules) in the codeword1.

Figure 5 shows the same region of the PDF417 symbol as Figure 4, with the 17 modules that
make up one of the codewords in the first row outlined. The white module to the left of this
codeword is the last module of the previous codeword, while the black module to the right is the
first module of the next codeword. The codeword structures on the subsequent rows of the
symbol are easy to pick out – notice again that each contains 17 modules, organized into four
bars and four spaces.

1 The fact that there are four bars and four spaces making up seventeen modules is the origin of the “417” of
PDF417. The “PDF” stands for “Portable Data File.”

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 5 -

Figure 5 - A Codeword in the PDF417 Symbol

Codewords are significant because the internal encoding rules for the barcode translate the text
or binary data being placed into the PDF417 symbol into a series of codewords. The actual
process via which this is done is complex, but the programmer does not need to worry about this
– the encoder software handles all these details. All that needs to be understood is that text and
data get converted into codewords, and then the codewords are placed into the physical barcode.

There are actually two types of codewords in a PDF417 barcode. The codewords mentioned
previously are referred to as data codewords, since they encode the data being transmitted by the
PDF417 symbol. The second type of codewords are called error correction codewords, or ECC
codewords.

When a PDF417 barcode is printed and later scanned, there is no guarantee that every single
module will be recovered correctly by the scanner. Barcodes can, of course, be damaged, plus
scanners may not perfectly scan the barcode2. In order to prevent this from resulting in an
unrecoverable symbol, PDF417 uses a technique called Reed-Solomon Error Correction.
Essentially, this involves adding extra, specially calculated information to the barcode. When
the barcode is scanned, this information can be examined mathematically, and can be used to fill
in missing information or repair information that was damaged.

The codewords in a PDF417 symbol are arranged in a rectangle in the center of the symbol
sometimes referred to as the data region. Figure 6 shows the location of the codewords within
our sample PDF417 symbol. As you can see, in this particular symbol, they are arranged in two
columns. The symbol itself has 14 rows, so there are a total of 28 codewords in this symbol.
PDF417 symbols can have between 1 and 30 columns of codewords, and between 3 and 90 rows,
allowing considerable variation in both the amount of data the symbol can hold and also its
shape. Note that not every combination of row and column is allowed, however, since an
individual PDF417 symbol is restricted to a maximum of 928 total codewords.

2 PDF417 was specifically designed to be scanned by laser scanners, but there is no guarantee, for example, that the
laser beam will cross each and every module in the barcode as it scans back and forth.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 6 -

Figure 6 - Codewords in the Data Region of the PDF417 Symbol

2.1.4 Start Pattern, Stop Pattern and Row Indicators
Figure 7 shows the final portions of a PDF417 symbol. Because these areas do not carry data,
they are sometimes referred to as “overhead” within the symbol.

Start Pattern Stop Pattern

Right Row IndicatorsLeft Row Indicators

Figure 7 - PDF417 Symbol "Overhead" Areas

Every row in a PDF417 symbol begins with a special bar-space pattern called a start pattern and
ends with another special bar-space pattern called a stop pattern. The patterns are identical on
all rows, so they appear as solid vertical areas. These areas help a laser scanner detect then the
scanning beam crosses into and out of a symbol, and help an imaging scanner find the symbol.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 7 -

Just inside the start and stop patterns are the left row indicators and right row indicators. These
have the same general appearance as codewords, but are constructed differently and do not carry
data. Instead, these provide the following information:

• Which individual row within the barcode this is

• The number of rows in the barcode

• The number of columns in the data region of the symbol

• The error correction level of the symbol

Each individual row encodes its own row number, while the remainder of the information is
encoded multiple times, spread across the various rows. The scanner uses this information both
to recover the general shape of the symbol, but also to align itself to the rows of a symbol. A
laser scanner beam, in particular, may cross the symbol diagonally. By knowing on what row
the beam entered the symbol and on what row it exited, the scanner can usually compute the path
the beam took through the symbol.

2.2 PDF417 Symbol Size

2.2.1 Calculating the Size of a Particular Symbol
The size of a PDF417 symbol can be determined given the following four quantities:

• The number of data columns in the symbol (between 1 and 30)

• The number of rows in the symbol (between 3 and 90)

• The height of a module

• The width of a module
Each data column is made up of codewords, each of which is 17 modules in width. The start
pattern and row indicators are also 17 modules in width, while the stop pattern is 18 modules in
width. Thus, there are a total of 69 modules worth of overhead (start, left row indicator, right
row indicator and stop pattern) on each row in addition to the data codewords.

When determining the height and width of a symbol, consideration must also be given to the
required quiet zone. The PDF417 standard requires an area of white space to the left and right of
the symbol so that the scanner can accurately identify the start and stop patterns. (Obviously, if
background graphics merged into either of these patterns, it would make decoding difficult or
impossible.) The standard requires at least two modules worth of white space on each side of the
symbol.

Thus, the width of the printed portion of a symbol will be:
printed_symbol_width = (num_data_columns * 17 + 69) * width_of_module

while the overall width that must be allotted for a symbol must be at least:
total_symbol_width = (num_data_columns * 17 + 73) * width_of_module

since four additional module widths must be allotted for the quiet zone.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 8 -

Since each row is equal in height to the module height, the height of the symbol is easier to
calculate:

symbol_height = num_rows * height_of_module

Thus, for example, our sample symbol, which has 14 rows and 2 data columns, if printed using
modules that were 0.010 inches wide and 0.030 inches high, would be:

printed_symbol_width = (2 * 17 + 69) * 0.010 = 1.03 inches
total_symbol_width = (2 * 17 + 73) * 0.010 = 1.07 inches
symbol_height = 14 * 0.030 = 0.42 inches

2.2.2 Determining Symbol Size from a Given Area
The formulas above provide the size of a symbol if you have already determined the number of
data rows and data columns. The encoder, however, requires you to indicate sizes to it in terms
of rows and columns, not in physical dimensions.

If you have a certain width available on your form and need to determine the number of columns
that will fit in it, you can use the following formula:

modules_available = INTEGER(width_available / width_of_module)
data_columns = INTEGER((modules_available – 73) / 17)

where the INTEGER() function means “largest integer less than” the enclosed quantity, and the
width available includes the space required for the quiet zone.

The calculation above assumes that we are going to include the quiet zone in the generated
symbol. If, instead, we have enough white space on the printed paper, and thus are not going to
have the encoder reserve space in its output, then the calculation becomes:

modules_available = INTEGER(width_available / width_of_module)
data_columns = INTEGER((modules_available – 69) / 17)

Similarly,
rows_available = INTEGER(height_available / height_of_module)

As mentioned earlier, the maximum number of data columns that can be put into in a PDF417
symbol is 30, and the maximum number of rows is 90.

2.2.3 Module Size
Choosing the correct module size is one of the most critical items in designing a system that
includes PDF417 symbols.

The smaller the module size, the smaller the barcode, and the more data can be encoded in a
specific area. The larger the module size, however, the easier the barcode is to scan. In addition,
larger module sizes are less sensitive to problems caused by subtle printing issues, like the
tendency of ink to spread somewhat with inkjet printers.

Further, “tall” modules make it easier for people to align a laser scanner to read a symbol, since
it gives more “diagonal” distance. “Short” modules, on the other hand, allow more rows to be
placed in a given area.

The AIM specification for PDF417 recommends that modules be at least 0.010 inches wide and
0.030 inches high, and that modules be at least 3 times as high as they are wide.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 9 -

In choosing a module size, however, consideration must also be given to the resolution of the
printer being used to print the barcode – modules should always be designed to be an integer
number of printer pixels. If this is not done, the module sizes will not be uniform across the
symbol.

Thus, the following module sizes are common:

 Module Size (pixels) Module Size (inches) Module Size (mm)

Printer Resolution Width Height Width Height Width Height

240 dpi 2 6 0.0083” 0.0250” 0.210 mm 0.635 mm

240 dpi 3 9 0.0125” 0.0375” 0.317 mm 0.952 mm

300 dpi 3 9 0.0100” 0.0300” 0.254 mm 0.762 mm

300 dpi 4 12 0.0133” 0.0400” 0.338 mm 1.016 mm

Note that, when using the Silver Bay Software encoder’s font rendering option, the particular
font chosen determines the module size. If using the graphics rendering option, the size of the
module in pixels, and the resolution specified for the graphics image, determines the module
size.

2.3 Error Correction
As mentioned in Section 2.1, a PDF417 symbol contains error correction codewords in addition
to data codewords. The number of error correction codewords in a particular symbol cannot be
chosen arbitrarily. Instead, one of a predetermined number must be used.

Internally, each symbol uses one of 9 “levels” of error correction. Increasing the error correction
by one level doubles the number of error correction codewords that are included in the symbol.
This, in turn, roughly doubles the amount of damage that the symbol can tolerate. Thus, from a
symbol robustness point of view, using a higher level of error correction is advantageous. Doing
this, however, increases the size of the symbol and, at the highest levels, limits the total amount
of data that can be encoded in the symbol, since the total number of codewords (data plus error
correction) that can appear in a symbol is limited.

The specific error correction (ECC) levels available are:

ECC Level Number of ECC Codewords

0 2

1 4

2 8

3 16

4 32

5 64

6 128

7 256

8 512

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 10 -

The encoder allows the programmer to manually specify the error correction level to be used.
Alternately, the encoder can choose the level automatically based on the amount of data in the
symbol.

The PDF417 specification recommends the following minimum levels of error correction for a
symbol:

Number of Data Codewords ECC Level Total Resulting Codewords

1 – 40 2 10 – 49

41 – 160 3 58 – 177

161 – 320 4 194 – 353

321 – 863 5 386 – 928

The observant reader will note that there is one extra codeword in the numbers in the right-hand
column. Each PDF417 symbol has one extra codeword in it in addition to the data and ECC
codewords. This code is used for internal purposes.

2.4 Truncated or Compact PDF417
For small PDF417 symbols, the start and stop patterns and the row indicators represent a
significant amount of overhead in terms of print area. A variant of PDF417, referred to as
“Truncated PDF417” in the AIM specification and “Compact PDF417” in newer specifications,
exists which eliminates the right row indicators and all but one column module of the stop
pattern. The encoder will generate symbols of either type, under the control of a parameter. The
default is standard PDF417, which includes the right row indicators and stop pattern. This
concludes the discussion of available user parameters.

2.5 Character Set Issues
The PDF417 symbology stores its internal information using the ASCII character set. While the
ASCII character set is common on microcomputers and minicomputers, the EBCDIC character
set is more common on mainframe systems.

On EBCDIC systems, textual data must be converted from EBCDIC to ASCII before it is
actually placed into the barcode. The encoder library provides facilities to handle EBCDIC-to-
ASCII conversion of the parameter data for the programmer, or the programmer may manually
convert the data before presenting it to the encoder to process.

If the input data to the encoder is binary, or contains a mix of binary and text characters, then the
application programmer must perform the EBCDIC-to-ASCII conversion prior to calling the
encoder. If this is not done, the encoder may attempt to perform EBCDIC-to-ASCII conversions
on the binary data, thus corrupting the barcode.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 11 -

3 Controlling the Generation of a PDF417 Symbol
Unlike some other symbologies, PDF417 symbols can be designed in a variety of heights, widths
and resolutions. It also supports a wide variety of data formats The PDF417 encoder provides
the programmer with a great deal of control over the symbol that is generated. This is done by
setting various control parameters. When you initialize the PDF417 encoder, all parameters are
assigned a default value. Thus, if you do not need fine control over the encoder’s output, you
may simply use it without setting any explicit parameter values. This section of the document
describes each of the programmable parameters, its effect on the generated symbol, and why you
might want to use a value other than the default.

3.1 Controlling the Internal Encoding Method
As was mentioned earlier, the process of converting text or binary data into the codewords that
make up the PDF417 symbol can be a complex operation. In particular, for many data sets, there
are multiple different methods that can be used to represent the data, due to the richness of the
underlying PDF417 data encoding methods.

As a result, the Silver Bay Software PDF417 encoder provides the user with two basic
approaches to encoding data – “binary mode” and “optimized mode.”

3.1.1 Binary Mode
Binary mode is the most straightforward encoding technique available in the PDF417
symbology. In binary mode, each group of six bytes is encoded into five codewords. If the data
set to be encoded is not a multiple of six, the “extra” bytes are encoded one per codeword.

Binary mode has the following advantages:

• Any kind of data (text, binary, etc.) can be encoded.

• Because the calculations are very straightforward, it takes less processing than Optimized
Mode to perform. Thus, the total amount of CPU time required to produce the symbol is
smaller.

• The size of the symbol can be directly predicted based solely on the number of bytes of
input data.

It also, however, has the following disadvantages:

• For data sets that are primarily alphanumeric, symbols encoded in Binary Mode are
generally somewhat larger than those that would be created using the Optimized Mode.

3.1.2 Optimized Mode
In addition to its binary encoding mode, the PDF417 symbology has internal encoding methods
that are designed to reduce the size of a symbol whose contents are text. Special modes exist to
encode numeric sequences and text sequences, and the symbol can switch back and forth
between these modes (and binary mode) at different points in the symbol in order to encode the
data more compactly. As a result, there are at least two different ways to encode every
alphabetic or punctuation character, and at least three ways to encode digits.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 12 -

The Silver Bay Software encoder supports an “Optimized Mode” encoding selection. When this
mode of encoding is used, the encoder will determine the best combination of encoding
techniques in order to produce the smallest possible symbol.

Optimized Mode has the following advantages:

• Any kind of data (text, binary, etc.) can be encoded, since the optimizer will “fall back”
to binary mode as required.

• The size of the symbol will be as compact as possible.
It also, however, has the following disadvantages:

• The calculations required are more complex than Binary Mode. As a result, the encoding
process will be somewhat slower than for Binary Mode.

It is important to note that two data sets with the same number of characters but with different
data may result is symbols that are of slightly different sizes. This can happen because, in one
case, the various encoding modes available within the symbol may combine more efficiently
than in another case, resulting in somewhat fewer codewords being generated. This is significant
if you are trying to “tune” your symbol sizes to fit into a tight area. Just because one particular
data set fits does not guarantee that another data set may not be just a little bigger. Therefore,
you must always allow some margin for expansion, or you may find that the encoder will give
you a “not enough space” error when encoding certain data sets3.

3.2 Controlling PDF Symbol Size

3.2.1 Module Size - Font Rendering
When using the font rendering process, the size of an individual module is controlled by the
glyph size designed with the font.

3.2.2 Module Size - Graphics Rendering
When using the graphics rendering process, the portion of the PDF417 encoder that renders the
symbol into a graphic format accepts four parameters to control the output file size:

• The module width in pixels.

• The module height in pixels.

• The amount to “shave” modules horizontally.

• The amount to “shave” modules vertically.

The module width is conventionally set at 10 mils, or 0.010 inches, and the module height at 30
mils, or 0.030 inches. The exact size that you choose is up to you; however there are two
guidelines to remember:

3 The symbol generated in Optimized Mode will never be larger than the symbol generated in Binary Mode, since
the optimizer will detect the cases where Binary Mode provides the most efficient encoding method.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 13 -

• Under most circumstances, the module height should be at least three times the module
width. If the module height is less than three times the module width the person scanning
the symbol has to be much more careful to align the scanner with the symbol. Using a
module height-to-width ratio of at least 3 allows a reasonable amount of tilt between the
scanner and the symbol.

• The module height and width must be an integral number of pixels on your output device
for maximum readability. Thus, if you are printing to a printer with a resolution of 360
dots per inch (DPI), you should probably pick a module width of 11.1 mils. (this is
exactly 4 pixels). Trying to generate a PDF417 symbol with a 10 mil module width will
cause some modules to end up 3 pixels and others 4, which disrupts the reading process
to some extent. The encoder will only generate a symbol that uses an integral number of
pixels for the module height and width; however you still must be careful that you do not
introduce this type of distortion when you print the symbol. Thus, you will typically want
to factor in the resolution of the printer as part of the symbol generation process.

During most printing processes, there is a tendency for the ink or toner to spread slightly. This
means that when you print a PDF417 symbol, the black modules tend to end up slightly wider
than expected, and the white modules slightly narrower. The encoder allows you to compensate
for this ink spread by “shaving” the black modules. Choosing a non-zero value for the horizontal
“shaving” amount, for example, causes the encoder to lay the symbol out using the specified
module width, but then change part of each black module back to white.

The amount of shaving required depends entirely on the printing process and the type of stock
being used, and can typically only be determined through experimental printing and
measurement. With laser printers, this effect is minimal, and can usually be ignored. With inkjet
printers, particularly on low-quality paper stock, the amount of ink spread can be significant.
You may need to experiment to determine an appropriate setting.

You can determine the appropriate amount of horizontal shaving by printing a symbol with no
shaving (zero) and with one pixel’s worth of shaving. Look at the black and white vertical bars in
the start patterns of both symbols, and choose the value for which the black and white bars are
closest to the same width. In the vertical direction, again try with and without one pixel of
shaving. If using one pixel’s worth of shaving introduces a gap between successive rows of the
symbol, go back to zero.

Only in the rarest of cases should you ever need more than one pixel’s worth of shaving.

3.2.3 Quiet Zones
The PDF417 symbol requires a small amount of “white space” all the way around the symbol to
ensure that the scanner can separate the symbol from its background. In barcode terminology,
this is referred to as the “quiet zone.” The encoder provides you the option of including the quiet
zone in the image by surrounding the actual barcode with white pixels. If you choose not to have
the encoder include the quiet zone in the returned symbol, you must make sure that there is
sufficient white space around the barcode when you print it.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 14 -

3.2.4 Row and Column Control
Under normal circumstances, the PDF417 encoder will generate the smallest symbol (minimum
number of rows and columns) that will contain the encoded data. This is done by setting the
“use default” values. Some applications, however, may require that the generated symbol not
exceed a certain width or a certain height. For example, you may be printing a PDF417 symbol
onto a form that has a certain area reserved for the symbol. On this form, you may not care about
the exact height of the symbol but may want the symbol to either have a specific width or a
certain maximum width, a specific height or a certain maximum height.

In order to control the size and shape of the symbol, the PDF417 encoder accepts the following
parameters:

• Minimum number of data columns to use. Set this if you want to ensure that the symbol
is always a certain minimum width.

• Maximum number of data columns to use. Set this if you want to ensure that the symbol
does not exceed a certain maximum width.

• Minimum number of rows to use. Set this if you want to ensure that the symbol is always
a certain minimum height.

• Maximum number of rows to use. Set this if you want to ensure that the symbol does not
exceed a certain maximum height.

You can force a specific width or height by setting the corresponding minimum and maximum to
the same value. Remember that these parameters are in units of rows and columns. To translate
this to actual printed dimensions, you need to use the formula given at the beginning of this
section.

NOTE: Restricting the maximum height or width of a symbol may potentially reduce the
amount of data that can be encoded into a symbol.

3.2.5 Aspect Ratio Control
Rather than controlling symbol size and shape via row and column counts, you may choose to
control it via aspect ratio. The encoder provides the ability to provide “suggestions” to the
encoder as to whether it generates a tall, narrow symbol, a relatively square symbol, or a short,
wide symbol. This is controlled by a pair of values indicating the preferred aspect ratio. Thus, for
example, if your form aesthetics suggest that the symbol should be approximately 3 times as
wide as it is high, you may request a 3:1 aspect ratio symbol. When the data is encoded, the
encoder will choose a row and column count that comes as close to this as possible.

Aspect ratio control and row/column control work together. The row and column minimum and
maximum values are treated as absolutes. If the symbol cannot be fit into these constraints, an
error is generated. Within the specified constraints, however, there is frequently more than one
valid row/column choice. When this occurs, it is the aspect ratio information you specify that
allows the encoder to choose a particular row/column combination as “better” than the others.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 15 -

3.2.6 Error Correction Parameters
The PDF417 symbology allows the programmer a great deal of control over how much error
correction is built into the symbol. While the default values are appropriate for many
applications, if you anticipate that your printed symbol is likely to suffer damage, you may want
to increase the amount of error correction that is built in. Conversely, if you know that the
symbol will not be damaged, and will be read under relatively ideal conditions, you may wish to
decrease the amount of error correction included. Be aware that the trade off is that a higher error
correction level will result in a larger symbol.

The encoder accepts parameters to control the amount of error correction included in the symbol,
the parameters work together to control what ECC level will be produced. The basic parameters
are:

1. How the error correction is being specified. There are three choices:

a. Use the AIM recommended defaults. In this case, the encoder will automatically
follow the recommendations in the PDF417 symbology standard.

b. Use a specific error correction level. In this case, the encoder will use the specific
error correction level you specify in the value parameter.

c. By percent. If you select this option, you also specify a percent in the value
parameter. The encoder will choose the lowest level of error correction that includes
at least this percentage of ECC codewords. For example, if you specify 10%, and the
symbol has 250 codewords, the encoder will include at least 25 error correction
codewords. Since one of the levels above must be chosen, the encoder will, in this
case, use level 4, which includes 32 error correction codewords.

2. Whether or not the encoder may “pad with ECC.”

Since the final PDF417 symbol must be rectangular, there sometimes arise situations in which
the numbers of data and error correction codewords don’t work out to an exact rectangle. In this
case, the encoder automatically adds the required number of “pad” codewords to fill out the
rectangle. In many cases, particularly in smaller symbols, the extra number of codewords that
have to be added for padding turn out to be enough to increase the ECC level without increasing
the size of the symbol. For example, suppose that you were generating a 10-column symbol, you
had specified the use of ECC level 2, and had 64 data codewords. The 64 data codewords and 8
ECC codewords total to 72 codewords, which fill 7 full rows, plus two left-over codewords.

Because the data doesn’t fit into 7 rows, the encoder will generate an 8-row symbol. This
symbol will have a total of 80 codewords (8 rows times 10 columns), so the encoder will and add
8 pad codewords to fill the 80-72=8 unused codewords in the rectangle. In this case, however,
instead of adding 8 pad codewords, the encoder could add 8 ECC codewords by switching from
level 2 to level 3. The resulting symbol is the same size as one padded with “dummy
codewords,” however it will tolerate more damage than if non-ECC codewords had been used to
pad the symbol. Since it potentially provides a more robust symbol without increasing the
symbol size, “pad with ECC” should, in general, be the programmer’s choice, and thus is the
default behavior of the encoder. There are, however, certain rare situations in which it is
necessary to force a specific level of ECC, and not allow the encoder to change it. Because of
this, the final decision as to whether the encoder is allowed to pad with ECC is left to you.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 16 -

3.3 Input Data Format
In most applications, a PDF417 symbol will simply contain data. The AIM specification for
PDF417, however, includes provision to embed “Global Label Identifier” (GLI) sequences
mixed in with the data. These sequences are similar to escape sequences, in that they provide
information about the data, rather than data itself. A newer, more portable representation for GLI
sequences called “Extended Channel Interpretations” (ECI) or more generically “Extended
Channel Escape” (ECE) has also been defined by the AIM standards body.

The PDF417 encoder supports data streams that have data only, streams with GLI sequences, and
streams with ECE sequences. Because the three types of streams are formatted differently, the
encoder needs to be told which type of stream it is receiving. Because GLI and ECE applications
are rare at present, the default is a data-only stream.

3.4 Default Parameters
The following are the default parameter values that are set by the initialization process:

Parameter Legal Values Value Set by Default

Minimum Row Count 0, 3-90 0 = Don’t care (any legal value)

Maximum Row Count 0, 3-90 0 = Don’t care (any legal value)

Minimum Column Count 0, 1-30 0 = Don’t care (any legal value)

Maximum Column Count 0, 1-30 0 = Don’t care (any legal value)

Type of ECC Calculation AIM Guidelines
By Level
By Percent

Use the AIM default guidelines

Pad with ECC Allow
Don’t Allow

Allow

Data Stream Format Data Only
Data with embedded GLI sequences
Data with embedded ECE sequences

Data only (no escape sequences)

Type of PDF417 Symbol Standard
Truncated/Compact

Standard (not Truncated/Compact)

Preferred Aspect Ratio 1:2 Twice as wide as high
assuming modules are 3:1

If any of these defaults are not acceptable in your application, you may change them using the
appropriate initialization or parameter API function.

Parameters may actually be set either before the data is encoded or after it is encoded. In most
applications, the appropriate values are determined when the program is written, and thus are
typically set before encoding. In some cases, however, you might want to encode your data first,
and then set the parameters4. For example, you might have an application in which the PDF417
could go in one of two places on the form depending on its size. In one area, you can fit a small,
rectangular symbol, and in another, a large wide one. In this case, you may want to encode the

4 This capability is only provided via the C language API.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 17 -

data first, determine the size of the symbol, and then set the row/column restrictions or aspect
ratio choice before you finish the encode process.

Determining the size of the symbol involves knowing the number of codewords required to
encode the data and the error correction level. These two values will give the number of
codewords that will be in the symbol. Once this information is known, you can choose the
number of rows and columns required to render the symbol.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 18 -

4 Using the PDF417 Encoder with the C Language

4.1 Encoder Operation

4.1.1 Encoder Input and Output
As you have no doubt surmised by now, the process of converting data to a two-dimensional
barcode is called encoding. This is a sophisticated process that involves data validation, data
compaction, and the insertion of error-correction information. When this document refers to the
encoder, it is referring to the Silver Bay Software PDF417 encoder library. While the process of
encoding the data is quite complex, Silver Bay Software has developed a set of simple to use
functions for generating PDF417 symbols.

The input into the encoder functions is a work area which is allocated by the user, the number of
bytes of data to encode, and a pointer to the data to encode. A more detailed discussion is
provided in each of the language specific sections of this manual.

If the input data exceeds a single symbol there is an optional feature in the symbology called
Macro PDF417 which provides a mechanism for the data to be split into blocks and be
represented in more than one PDF417 symbol. A separate set of API functions handle Macro
PDF417 symbols.

The PDF417 encoder is designed to be compatible with as many printing environments as
possible. Since printing technologies, processes, and systems vary widely from computer system
to computer system, the encoder does not directly print the symbol. Instead, the encoder operates
in two phases. The first phase performs all the computations associated with the high-level
encoding and error correction. The result of this phase is a PDFSYMBOL structure, which
contains the numerical values of all the data and error correction codewords.

The second phase of the encode process is referred to as “rendering.” This process converts the
intermediate PDFSYMBOL data to an appropriate format. The encoder supports a variety of
output formats, including Microsoft Windows Device Independent Bitmaps (DIB or BMP
format), Tagged Image File Format (TIFF) format, and font-based output. The encoder
distribution kit contains API routines to automatically generate each of these formats from the
PDFSYMBOL data.

Different environments may have different needs with respect to where the output data is placed.
Some user environments will want the output to go to a file on disk, others to an area of memory.
As a result, the data output process has been separated from the graphics data generation process,
placing it under the control of the programmer. When the graphics rendering routines need to
output data, they do so via a user-provided callback subroutine. The encoder distribution kit
provides sample code for several different output callback functions. These samples handle the
more common cases of disk and memory output.

4.1.2 Font Rendering
Since printing technologies, processes, and systems vary widely from computer system to
computer system, the encoder also offers an option referred to as “font rendering.” Instead of a
graphics file, the encoder returns a sequence of characters to the calling program. These

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 19 -

characters correspond to specially designed code points in a custom font provided with the
encoder. When the returned characters are rendered (i.e., printed) in this font, the result is a
PDF417 symbol. It is the responsibility of the application programmer to generate the
appropriate print stream data to invoke the font on the printer and to send the characters returned
by the encoder to the printer.

When using the font rendering API, the PDF417 encoder generates its output as a sequence of
characters that must be matched to a corresponding font on the printer. Because of the varied
ways in which a printer can be connected to a computer, and the corresponding varied character
set transformations that can happen in this process, it is sometimes necessary to match the
characters that the encoder outputs to the font characters actually installed on the printer. The
encoder provides an initialization function that allows the actual characters output by the encoder
to be properly set for the particular installation. Although this is rarely necessary, if you do not
want to use the default character set, this initialization function should be called at the beginning
of program execution. It does not need to be called for each symbol generated.

The output font characters will be placed into an output buffer defined by the user of the API. If
this output area is defined too small, and the font characters to generate the symbol will not fit
into the designated area, an error will be set and returned back through the API. The resolve this
error, you must define the output area larger.

If you are going to use font rendering, be sure you read Section 9 for information related to how
to print the symbol characters properly in your environment.

4.1.3 Overview of the Encode Process
There are essentially seven steps to using the encoder. Briefly, they are as follows:

1. Allocate working memory for the encoder.

2. Initialize the encoder working memory.

3. Set encoder parameters to control the nature of the symbol to be generated (optional).

4. Perform the data encode.

5. Apply the error correction codewords and retrieve the encoded data in a PDFSYMBOL
structure.

6. Render the PDFSYMBOL data into one of the supported output formats.

7. Print the symbol. This step is the user’s responsibility, and is not performed with
functions provided by the encoder API.

If additional symbols need to be generated, the process may be repeated starting with either Step
3 (if the parameters need to be modified) or Step 4 (if the parameters do not need to be changed).

Each of these steps is described in more detail below. Manual pages for the individual API
subroutines are provided at the end of this section.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 20 -

4.2 Allocating Working Memory
The PDF417 encoder requires working memory in which to store temporary calculation results,
partially encoded data, and the parameters provided by the user. In order to maximize the
flexibility of the encoder, allocation of this working memory is the responsibility of the user.

The working memory is contained in a PDFUSER structure (defined in pdfdefs.h). An
instance of this structure may be allocated in one of three ways:

• Globally, by declaring a PDFUSER structure as a global variable.

• Locally (on the stack), by declaring a PDFUSER variable inside a subroutine.

• Dynamically, by allocating a PDFUSER structure using “malloc”, “new”, etc.

Requiring the programmer to handle the working area allocation has the following advantages:

• The PDF417 encoder has no dependence on C run-time routines such as “malloc” and
“free”.

• The programmer may choose the best way to allocate the memory for his environment.
The PDF417 encoder is thread-safe. Different threads of execution may be working on different
symbols without collisions, provided that each thread uses a unique PDFUSER area.

Most of the routines in the API require that the address of the PDFUSER area be passed as the
first parameter.

The optimizing version of the data encoder (PdfEncodeOptimal) requires more working
memory than the “binary-only” version of the encoder (PdfEncodeBinary). This extra
memory has been separated into a PDFOPTWORK structure so that users who do not require the
optimizing encoder are not burdened with its extra memory requirements. Thus, if the optimizing
encoder is used, an instance of the PDFOPTWORK structure must be allocated and its address
passed to PdfEncodeOptimal. Unlike the PDFUSER structure, the PDFOPTWORK structure
is only needed while PdfEncodeOptimal is running, and thus can be discarded after
PdfEncodeOptimal returns, if necessary. No special initialization of this area is required.

4.3 Initialize Working Memory
The API includes a function PdfInit that will properly initialize the contents of a PDFUSER
structure. PdfInit sets all the encoder parameters and aspect ratio values to appropriate default
variables, and prepares the working memory area to receive encoded data.

IMPORTANT: You MUST call PdfInit to initialize the PDFUSER structure before
calling any of the other API functions.

The API provides another function named PdfClear that is related to PdfInit. Situations
may arise in which the encoding process fails to complete properly. One example would be if
more data is passed to the encoder than will fit in a single symbol. Following a failure of this
type, the PDFUSER structure may be left in an inconsistent internal state. To correct this, the user
must call either PdfInit or PdfClear. The difference between the two is that PdfClear
will clear out the results of the previous encode operation, but will not modify the encoder

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 21 -

parameters that may have been set. PdfInit, on the other hand, will reinitialize all the encoder
parameters in the PDFUSER structure to their default values.

4.4 Set Encoder Parameters
Section 3.4 listed the default parameter values that are set by PdfInit.

If any of these defaults are not acceptable in your application, you may change them with a call
to PdfGenParamSet or PdfAspectRatioSet. The current settings may be retrieved with
PdfGenParamGet or PdfAspectRatioGet respectively.

4.5 Encoding Data
Prior to encoding, the input data stream might require conversion from EBCDIC to ASCII. The
PDF417 symbology stores its internal information using the ASCII character set. This decision
rests on the environment in which you are executing the encoder and what type of data the
application is encoding. It is up to the user to make this decision and convert the input data into
the required character set.

The actual data encoding process is performed using one of two functions. The two differ in their
approach to the encoding process. The two functions are:

PdfEncodeOptimal This function will generate the smallest possible symbol
given the input data.

PdfEncodeBinary This function will encode the data in the fastest possible
manner, trading off speed for a somewhat larger symbol.

As described in Section 3.1, the PDF417 symbology provides multiple basic “modes” for
encoding data. One mode is best for ASCII text, another for numeric data, and a third for binary
data. Which mode is “best” for each character depends on the specific character sequences that
precede and follow it.

The PdfEncodeOptimal routine uses a sophisticated dynamic programming algorithm to
choose among the various ways of encoding the data. It is designed to choose the appropriate
mode for each character so that the overall symbol has the absolute smallest number of data
codewords. Thus, using this function will result in the smallest possible symbol. The tradeoff is
that this function takes longer to run, and requires more working memory than
PdfEncodeBinary.

The PdfEncodeBinary routine, on the other hand, emphasizes speed over symbol size. It
always uses the binary compaction mode of PDF417, which can encode any 8-bit value, is very
fast to compute, and uses the minimum amount of working memory. The binary compaction
mode, however, achieves the poorest byte-to-codeword ratio of the available modes, so symbols
encoded with this function tend to be larger than those encoded with PdfEncodeOptimal.

Which function you should use depends on your application requirements and the nature of your
data. Unfortunately, it is difficult to determine, in advance, how much slower
PdfEncodeOptimal runs and how much smaller the symbol will be, since this is entirely
dependent on the nature of the data that is passed in. You may wish to experiment with both
encoding options.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 22 -

4.6 Error Correction and Retrieval of Symbol Data
Once your data is encoded and any parameters you want to change after the encode process are
set, you call PdfRetrieveSymbol to apply the error correction desired and return the
PDFSYMBOL data. This process has been separated from the data encode process to allow
parameters to be changed after the number of data codewords has been determined, if desired.
The PdfRetrieveSymbol function does the following:

• Determines the number of rows and columns in the final symbol, based on the sizing and
aspect ratio parameters the user specifies.

• Determines the ECC level that will be used based on the ECC parameters the user
specifies.

• Applies any pad codewords required to fill the symbol rectangle.

• Computes the actual ECC codewords and appends them to the end of the symbol data.

• Copies the final symbol data into a PDFSYMBOL structure that you provide.

• Clears the encoded data out of the PDFUSER area so that it is not necessary to call
PdfClear or PdfInit again before encoding more data.

4.7 Rendering the Symbol
Given the symbol data returned by the PdfRetriveSymbol function, you can now produce
graphics data that you can use to print the symbol. Three output options are available in this
version of the encoder:

• Microsoft Device Independent Bitmap (DIB / BMP) format (PdfDIBRender).

• Tagged Image File Format (TIFF) (PdfTIFFRender).

• Font-based output (PdfFontRender).

All three of the output options require that you provide a call-back function with a specific
prototype. The prototype is defined in Section 5.4. The rendering function calls this function any
time it needs to output data. This provides you with the maximum amount of flexibility as to how
you want to store the data. To make things easier, the encoder includes source code for the most
common types of callback functions, allowing output to files or to memory. You may either use
this source as-is, or use it as a pattern from which to design your own callback functions.

The BMP and TIFF rendering routines require that you provide the module dimensions in pixels,
and the amount of shaving to be performed on black modules. In addition, these routines require
working memory in which to build scan lines. The amount of working memory required depends
on the size of an individual line. The API includes functions (PdfDIBQuery and
PdfTIFFQuery) that allow you to determine how much memory will be required, as well as
the total number of bytes that will be output. The latter quantity is useful if you are outputting to
memory, as it allows you to preallocate a block that will be big enough to hold the entire symbol.
Refer to Section 4.1.3 and the description of the individual API for further detail on how the
query function works together with the rendering function.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 23 -

Font-based output produces a stream of characters that, when printed using a special font
provided with the encoder, will produce a PDF417 symbol. Refer to the description of the
individual API for more detailed information on how this is accomplished.

4.8 Printing the Symbol
Printing the symbol is your (the user’s) responsibility. Because the printing requirements vary so
much from system to system and application to application, the API provides no functions to
perform the printing operation.

4.9 Result Codes
Each API function returns a status result value. If the encode and symbol generation is
successful, the status should return PERR_OK. Refer to Section 10.1 for expected values and
detailed definitions.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 24 -

5 C Language API Functions
This section of the document provides detailed descriptions of each of the C Language API
routines

5.1 Initialization Process

5.1.1 PdfInit
Description:
This function is used to initialize the encoder working area after it has been allocated. . It also
sets all general user parameters and the aspect ratio parameters to their default values.

Prototype:
#include “pdfenc.h”

PDFERROR PDFAPI PdfInit(PDFUSERPTR pUserArea);

Arguments:
pUserArea a pointer to a PDFUSER structure.

A PDFUSER structure is defined as follows:
#define PDF_USER_AREA 3200 (defined in pdfdefs.h - number of unsigned longs)

struct sPdfUserArea
{
 unsigned long userArea[PDF_USER_AREA];
};

NOTES:

• The include file pdfenc.h contains all of the type definitions and prototypes for the
encoder API functions (pdfenc.h includes pdfdefs.h).

• PdfInit must be called before calling any other encoder function, otherwise the
encoder may not function properly.

• This function does not need to be called before every symbol encoded. It only needs to be
called once as part of program initialization.

• This function makes a call to both PdfGenParamSet and PdfAspectRatioSet to
set the default values.

Example:
void main(void)
{
 PDFUSER userArea;
 PDFERROR returnStat = PERR_OK;

 returnStat = PdfInit(&userArea);
 if(returnStat != PERR_OK)
 {

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 25 -

 printf(“*** ERROR calling PdfInit() status = %d”, returnStat);
 }

}

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 26 -

5.1.2 PdfClear:
Description:

This function is used to clear the PDFUSER structure without changing any of the general user or
aspect ratio parameters. It should be used after an encoder function returns an error before
attempting to encode another symbol.

Prototype:
#include “pdfenc.h”

PDFERROR PDFAPI PdfClear(PDFUSERPTR pUserArea);

Arguments:
pUserArea a pointer to a PDFUSER structure.

NOTES:

• The include file pdfenc.h contains all of the type definitions and prototypes for the
encoder API functions (pdfenc.h includes pdfdefs.h).

• Refer to PdfInit for further documentation on structures.

Example:
void main(void)
{
 PDFUSER userArea;
 PDFERROR returnStat = PERR_OK;

 returnStat = PdfClear(&userArea);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfClear() status = %d”, returnStat);
 }

}

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 27 -

5.1.3 PdfGenParamSet:
Description:
This function is used to set encoder general user definable parameters.

Prototype:
#include “pdfenc.h”

PDFERROR PDFAPI PdfGenParamSet(PDFUSERPTR pUserArea,
 PDFPARAMCPTR pSetData);

Arguments:
pUserArea a pointer to a PDFUSER structure.
pSetData a pointer to a PDFPARAM structure.

All fields in the input structure PDFPARAM must contain either a valid value or be initialized to
PDF_USE_DEFAULT, the encoder’s default value.

A PDFPARAM structure is defined as follows:
struct sPdf417Parameters
{
 unsigned int minRows; /* rows in symbol (3-90) */
 unsigned int maxRows;
 unsigned int minCols; /* columns in symbol (1-30) */
 unsigned int maxCols;
 ECCTYPE eEccType; /* Use default, level or percent */
 unsigned int eccValue; /* ecc level (0 - 8) or */
 /* ecc percentage (1-100) */
 PDFBOOL bNoPadExtraEcc; /* If have room to increase ECC level, */
 /* what to do? False = increase if */
 /* have room in symbol, True = don't */
 PDFDF eDataFormat; /* Flag to indicate data stream format. */
 /* escape sequence as GLI or ECI or */
 /* no escape sequences in data */
 PDFBOOL bIsTruncated; /* 0 = Standard, 1 = Truncated symbol */
};
typedef struct sPdf417Parameters PDFPARAM;
typedef struct sPdf417Parameters PDFPTR *PDFPARAMPTR;
typedef const struct sPdf417Parameters PDFPTR *PDFPARAMCPTR;

The individual structure members are defined as follows:

minRows The minimum number of rows to use in the symbol.

maxRows The maximum number of rows to use in the symbol.

minCols The minimum number of columns to use in the symbol.

maxCols The maximum number of columns to use in the symbol.

eEccType An enumerated type, ECCTYPE (defined in pdfdefs.h).
The table below lists the possible values:

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 28 -

Value Meaning

ECC_DEFAULT Use the AIM-recommended default error correction levels.
NOTE: when this is selected, the eccValue parameter is
ignored, and should be set to zero.

ECC_LEVEL Use the specific ECC level specified in eccValue.

ECC_PERCENT Use the ECC Percentage in eccValue.

NOTE: If ECC_DEFAULT is set, the eccValue parameter (below) must
be set to 0 and will be ignored

eccValue The meaning of this parameter depends on the value of
eEccType. For ECC_DEFAULT, this parameter must be
set to 0 and is ignored. For ECC_LEVEL, this parameter
contains the ECC level (0-8). For ECC_PERCENT, it
contains the ECC percentage (0-100).

bNoPadExtraEcc If this is set to PFALSE, the encoder is allowed to pad with
ECC codewords. If it is set to PTRUE, the encoder is
prohibited from doing this.

eDataFormat An enumerated type, PDFDF (defined in pdfdefs.h).
The table below lists the possible values:

Value Meaning

PDF_DEFAULT_FORMAT The input is a simple data stream without any
embedded escapes.

PDF_GLI_FORMAT Output data in GLI format (\nnn\nnn or
\nnn\nnn\nnn).

PDF_ECI_FORMAT Output data in ECI format (\nnnnnn).

bIsTruncated If set to PFALSE, a standard symbol is generated. If set to
PTRUE, a truncated symbol is generated.

NOTES:

• The include file pdfenc.h contains all of the type definitions and prototypes for the
encoder API functions (pdfenc.h includes pdfdefs.h).

• There is a Boolean typedef PDFBOOL for true and false values defined in pdfdefs.h..

• All values must be set to a valid value or PDF_USE_DEFAULT to use the default value.

• To force the column or row to be a specific value, set both the minimum and maximum
values to be equal.

• The PdfAspectRatioSet API allows a user to set the aspect ratio parameters of a
symbol.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 29 -

Example:
void main(void)
{
 PDFUSER userArea;
 PDFPARAM userParam;
 PDFERROR returnStat = PERR_OK;

 userParam.minRows = PDF_USE_DEFAULT;
 userParam.maxRows = PDF_USE_DEFAULT;
 userParam.minCols = 3;
 userParam.maxCols = 3;
 userParam.eEccType = ECC_PERCENT;
 userParam.eccValue = 10;
 userParam.bNoPadExtraEcc = PFALSE;
 userParam.dataFormat = PDF_DEFAULT_FORMAT;
 userParam.bIsTruncated = PFALSE;

 returnStat = PdfGenParamSet(&userArea, &userParam);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfGenParamSet() status = %d”, returnStat);
 }

}

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 30 -

5.1.4 PdfGenParamGet:
Description:
This function is used to retrieve the encoder's general user parameters.

Prototype:
#include “pdfenc.h”

PDFERROR PDFAPI PdfGenParamGet(PDFUSERPTR pUserArea,
 PDFPARAMPTR pGetData);

Arguments:
pUserArea a pointer to a PDFUSER structure.
pGetData a pointer to a PDFPARAM structure.

NOTES:

• The include file pdfenc.h contains all of the type definitions and prototypes for the
encoder API functions (pdfenc.h includes pdfdefs.h).

• The user must allocate a PDFPARAM structure to receive the values.

• Refer to PdfGenParamSet for further documentation on structures and enumerated
values of the structure.

• There is another API called PdfAspectRatioGet which will retrieve the aspect ratio
parameters.

Example:
void main(void)
{
 PDFUSER userArea;
 PDFPARAM recvr;
 PDFERROR returnStat = PERR_OK;

 returnStat = PdfGenParamGet(&userArea, &recvr);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfGenParamGet() status = %d”, returnStat);
 }

}

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 31 -

5.1.5 PdfAspectRatioSet:
Description:
This function is used to set the encoder's preferred aspect ratio parameters.

Prototype:
#include “pdfenc.h”

PDFERROR PDFAPI PdfAspectRatioSet(PDFUSERPTR pUserArea,
 PDFARCPTR pAspectRatio);

Arguments:
pUserArea a pointer to a PDFUSER structure.
pAspectRatio a pointer to a PDFAR structure.

A PDFAR structure is defined as follows:
struct sPdfAspectRatio
{
 unsigned int moduleWidth;
 unsigned int moduleHeight;
 unsigned int symbolWidth;
 unsigned int symbolHeight;
};

The members of this structure are as follows:

moduleWidth The width of an individual module.

moduleHeight The height of an individual module.

symbolWidth The desired width of the symbol..

symbolHeight The desired height of the symbol..

Note that the specific values passed in are not important. The important information is the
module height-to-width ratio and the symbol height-to-width ratio.

NOTES:

• The include file pdfenc.h contains all of the type definitions and prototypes for the
encoder API functions (pdfenc.h includes pdfdefs.h).

• All values must be set to a valid value or PDF_USE_DEFAULT to use the default value.

• There is another API called PdfGenParamSet which allows for a user to set the
general user parameters of a symbol.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 32 -

Example:
void main(void)
{
 PDFUSER userArea;
 PDFAR aspectRatio;
 PDFERROR returnStat = PERR_OK;

 aspectRatio.moduleWidth = 1; /* modules 3 times as high as wide */
 aspectRatio.moduleHeight = 3;
 aspectRatio.symbolWidth = 2; /* symbol 2 times as wide as high */
 aspectRatio.symbolHeight = 1;

 returnStat = PdfAspectRatioSet(&userArea, &aspectRatio);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfAspectRatioSet() status = %d”,
 returnStat);
 }

}

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 33 -

5.1.6 PdfAspectRatioGet:
Description:
This function is used to retrieve the encoder's aspect ratio parameters.

Prototype:
#include “pdfenc.h”

PDFERROR PDFAPI PdfAspectRatioGet(PDFUSERPTR pUserArea,
 PDFARPTR pAspectRatio);

Arguments:
pUserArea a pointer to a PDFUSER structure.
pAspectRatio a pointer to a PDFAR structure.

NOTES:

• The include file pdfenc.h contains all of the type definitions and prototypes for the
encoder API functions (pdfenc.h includes pdfdefs.h).

• Refer to PdfAspectRatioSet for further documentation on structures.

• There in another API called PdfGenParamGet which will retrieve the general user
parameters.

Example:
void main(void)
{
 PDFUSER userArea;
 PDFAR aspectRatio;
 PDFERROR returnStat = PERR_OK;

 returnStat = PdfAspectRatioGet(&userArea, &aspectRatio);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfAspectRatioGet() status = %d”,
 returnStat);
 }

}

5.2 Encoding Process

5.2.1 PdfEncodeOptimal
Description:
This function will encode the data using the fewest number of codewords possible. Be aware that
this method will result in the fewest number of codewords, but is usually slower and requires
more work space memory. If size is the major concern, this method should be used.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 34 -

Prototype:
#include “pdfenc.h”

PDFERROR PDFAPI PdfEncodeOptimal(PDFUSERPTR pUserArea,
 unsigned int nBytes,
 const void PDFPTR *pData,
 PDFOPTWORKPTR pOptWorkArea);

Arguments:
pUserArea a pointer to a PDFUSER structure.
nBytes number of bytes of data to encode.
pData a pointer to the data stream to encode.
pOptWorkArea a pointer to a PDFOPTWORK structure.

The PDFOPTWORK structure is defined as follows:
#define PDF_OPT_AREA 65200 (defined in pdfdefs.h - number of unsigned longs)

struct sPdfOptimalWorkArea
{
 unsigned long data[PDF_OPT_AREA];
};

NOTES:

• The include file pdfenc.h contains all of the type definitions and prototypes for the
encoder API functions (pdfenc.h includes pdfdefs.h).

• pData is defined as a void pointer so that any type of data may be passed in.

Example:
void main(void)
{
 PDFUSER userArea;
 unsigned int nBytes;
 unsigned char inData[30];
 PDFOPTWORK optWorkArea;
 PDFERROR returnStat = PERR_OK;

 returnStat = PdfInit(&userArea);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfInit() status = %d”, returnStat);
 exit(0);
 }

 strcpy(inData, ”Silver Bay Software, LLC.”);
 nBytes = strlen(inData);

 returnStat = PdfEncodeOptimal(&userArea, nBytes, inData, &optWorkArea);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfEncodeOptimal() status = %d”,
 returnStat);
 }

}

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 35 -

5.2.2 PdfEncodeBinary:
Description:
This function will encode the data using the binary compaction mode, which is the fastest
technique. As a result, however, the symbol may be larger than if PdfEncodeOptimal were
used. If speed is the major concern, then this method should be used.

Prototype:
#include “pdfenc.h”

PDFERROR PDFAPI PdfEncodeBinary(PDFUSERPTR pUserArea,
 unsigned int nBytes,
 const void PDFPTR *pData);

Arguments:
pUserArea a pointer to a PDFUSER structure.
nBytes number of bytes of data to encode.
pData a pointer to the data stream to encode.

NOTES:

• The include file pdfenc.h contains all of the type definitions and prototypes for the
encoder API functions (pdfenc.h includes pdfdefs.h).

• pData is defined as a constant void pointer so the user can pass in any data type pointer.

Example:
void main(void)
{
 PDFUSER userArea;
 unsigned int nBytes;
 unsigned char inData[30];
 PDFERROR returnStat = PERR_OK;

 returnStat = PdfInit(&userArea);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfInit() status = %d”, returnStat);
 exit(0);
 }

 strcpy(inData, ” Silver Bay Software, LLC.”);
 nBytes = strlen(inData);
 returnStat = PdfEncodeBinary(&userArea, nBytes, inData);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfEncodeBinary() status = %d”,
 returnStat);
 }

}

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 36 -

5.2.3 PdfRetrieveSymbol:
Description:
This function chooses the actual height and width of the symbol, pads it if required, computes
and appends the ECC codewords, and returns the resulting symbol data to the user. It then clears
the PDFUSER area so that it is ready for the next encoding operation. If you are going to being
the font rendering routines, the row and column parameters will need to correspond to your
receiving area for the font characters. This routine generates the symbol “look”, setting the rows
and columns of the symbol based on the user parameters that are chosen. Refer to the font
rendering API (PdfFontRender) for more information on how the symbol generated by this
routine will need to reflect the output buffer requirements.

Prototype:
#include “pdfenc.h”

PDFERROR PDFAPI PdfRetrieveSymbol(PDFUSERPTR pUserArea,
 PDFSYMBOLPTR pSymbol);

Arguments:
pUserArea a pointer to a PDFUSER structure.
pSymbol a pointer to a PDFSYMBOL structure.

A PDFSYMBOL structure is defined as follows:
struct sPdfSymbol
{
 unsigned int nRows; /* rows in symbol (3-90) */
 unsigned int nCols; /* columns in symbol (1-30) */
 unsigned int eccLevel; /* ecc level (0-8) */
 PDFBOOL bIsTruncated; /* Is Truncated symbol */
 PDFCODEWORD codeword[PDF_MAX_CODEWORDS];
};
typedef struct sPdfSymbol PDFSYMBOL;
typedef struct sPdfSymbol PDFPTR *PDFSYMBOLPTR;
typedef const struct sPdfSymbol PDFPTR *PDFSYMBOLCPTR;

The individual structure members are defined as follows:

nRows The number of rows in the symbol.

nCols The number of columns in the symbol.

eccLevel The ECC level that was chosen for the symbol.

bIsTruncated PTRUE if this is a truncated symbol, PFALSE for a standard symbol.

codeword An array containing the codewords in the symbol.

NOTES:

• The include file pdfenc.h contains all of the type definitions and prototypes for the
encoder API functions (pdfenc.h includes pdfdefs.h).

• Once the symbol has been retrieved, the PDFSYMBOL may then be used with any of the
rendering functions to generate the desired output (see next section for details).

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 37 -

Example:
void main(void)
{
 PDFUSER userArea;
 unsigned int nBytes;
 unsigned char inData[30];
 PDFSYMBOL recvrSymbol;
 PDFERROR returnStat = PERR_OK;

 returnStat = PdfInit(&userArea);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfInit() status = %d”, returnStat);
 exit(0);
 }

 strcpy(inData, ”Silver Bay Software, LLC.”);
 nBytes = strlen(inData);

 returnStat = PdfEncodeBinary(&userArea, nBytes, inData);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfEncodeBinary() status = %d”,
 returnStat);
 exit(0);
 }

 returnStat = PdfRetrieveSymbol(&userArea, &recvrSymbol);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfRetrieveSymbol() status = %d”,
 returnStat);
 }

}

5.3 Rendering Process
The second phase of the encode process is referred to as “rendering”. This process converts the
intermediate PDFSYMBOL data to an appropriate graphic format. There are many rendering
formats for the PDF417 symbol. The PDF417 encoder provides a few API functions to make the
rendering process simple. The process is done in two steps. First, a query API is called to
calculate size requirements. Second, a render API is called with the values received in the query
and the required output callback function. The actual data is returned from the renderer via the
callback routine.

Most of the rendering routines use a PDFRENDER structure to control the output. This structure
is defined as follows:

struct sPdfRenderInfo
{
 unsigned int modWidth;
 unsigned int modHeight;
 unsigned int shaveWidth;
 unsigned int shaveHeight;
 PDFBOOL bIncludeQuietZones;
};

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 38 -

The members of this structure are:

modWidth Width of each output module in pixels.

modHeight Height of each output module in pixels.

shaveWidth Number of pixels to “shave” off each black module
horizontally.

shaveHeight Number of pixels to “shave” off each black module
vertically.

bIncludeQuietZones If PTRUE, the output image will include the required white
border around the symbol. If PFALSE, only the symbol
itself will be in the output image.

During most printing processes, there is a tendency for the ink or toner to spread slightly. When
you print a PDF417 symbol, the black modules tend to end up slightly wider than expected and
the white modules slightly narrower. The encoder allows you to compensate for this ink spread
by “shaving” the black modules. Choosing a non-zero value for the horizontal “shaving” amount,
for example, causes the encoder to lay the symbol out using the specified module width but
change part of each black module back to white.

The amount of shaving required depends entirely on the printing process and the type of stock
being used. With laser printers, this effect is minimal and can usually be ignored. With inkjet
printers, particularly on low-quality paper stock, the amount of ink spread can be significant.
You may need to experiment to determine an appropriate setting.

Each of the rendering functions requires a callback function that is used to pass graphics data in
the required manner. Provided in the distribution are three sample callback functions as follows;

• PdfSinkStream (defined in sinkfile.c) – will create a file (fopen) and write
the graphics data to it.

• PdfSinkMemory (defined in sinkmem.c) – will write the graphics data to memory.

• PdfSinkFd (defined in sinkfile.c) – will create a file (creat) and write the
graphics data to it.

Any callback function can be used as output for the graphics data. It must, however, conform to
the callback function prototype discussed later in this section.

5.4 Rendering Callback Routines

5.4.1 Output Callback Functions
Description:
The PDF417 encoder requires that you provide a callback function that it uses to pass graphics
data to you. This function must conform to the prototype and behavior discussed below.

Prototype:
PDFERROR PDFPTR CallBackFunction(const unsigned char PDFPTR *pData,
 unsigned int nBytes,

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 39 -

 void PDFPTR *pUser);

Arguments:
pData a pointer to the data stream to write.
nBytes number of bytes to write.
pUser a pointer to the output object.

The meaning of the pUser parameter depends on the way the particular callback function
operates. When a rendering routine is called, it is passed a pointer to the callback function and a
user pointer. The user pointer is passed unaltered to the callback function each time the callback
function is called.

The PDF417 encoder provides source code for three pre-written callback functions as follows:

PdfSinkMemory This callback writes data out to memory. When the
rendering routine is called, pUser must be the address of
the memory pointer, not the memory pointer itself. The
pointer will be advanced, so you may need to work on a
copy.

PdfSinkStream This callback writes data out to a file via a FILE pointer.
When the rendering routine is called, pUser must be the
FILE pointer itself since the prototype is a void
PDFPTR *.

PdfSinkFd This callback writes data out to a file via a file descriptor.
When the rendering routine is called, pUser must be the
address of the file descriptor.

5.4.2 PdfSinkMemory
Example:

#include “pdfenc.h”
#include “pdfrend.h”
#include “sinkmem.h”

void main(void)
{
 PDFSYMBOL mySymbol;
 PDFRENDER myRenderInfo;
 unsigned long lineBufSize;
 unsigned long totalSize;
 char pLineBuf; /* allocated renderer working memory */
 char *pMem, *pCopy;
 PERERROR returnStat = PERR_OK;

 returnStat = PdfDIBQuery(&mySymbol,
 &myRenderInfo,
 PTRUE,
 /* include file header */
 &totalSize,
 &lineBufSize);
 if(returnStat != PERR_OK)
 {

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 40 -

 printf(“*** ERROR calling PdfDIBQuery() status = %d”, returnStat);
 }

 pLineBuf = malloc(lineBufSize);
 if(pLineBuf == PDFNULL)
 {
 printf(“*** ERROR – NO MEMORY”);
 exit(0);
 }

 pMem = malloc(totalSize);
 if(pMem == PDFNULL)
 {
 printf(“*** ERROR – NO MEMORY”);
 exit(0);
 }

 pCopy = pMem;
 returnStat = PdfDIBRender(&mySymbol,
 &myRenderInfo,
 PTRUE, /* include file header */
 pLineBuf,
 PdfSinkMemory, /* callback function */
 &pCopy); /* pUser */
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfDIBRender() status = %d”, returnStat);
 }

 free(pLineBuf);

 free(pMem);
}

5.4.3 PdfSinkStream
Example:

#include “pefenc.h”
#include “pdfrend.h”
#include “sinkfile.h”

void main(void)
{
 PDFSYMBOL mySymbol;
 PDFRENDER myRenderInfo;
 unsigned long lineBufSize;
 char pLineBuf; /* allocated renderer working memory */
 FILE *fp;
 PERERROR returnStat = PERR_OK;

 fp = fopen(“output.bmp”, “w”);
 if(fp == PEFNULL)
 {
 printf(“*** ERROR Opening output.bmp”);
 exit(0);
 }

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 41 -

 returnStat = PdfDIBQuery(&mySymbol,
 &myRenderInfo,
 PTRUE, /* include file header */
 PDFNULL,
 &lineBufSize);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfDIBQuery() status = %d”, returnStat);
 }

 pLineBuf = malloc(lineBufSize);
 if(pLineBuf == PDFNULL)
 {
 printf(“*** ERROR – NO MEMORY”);
 exit(0);
 }

 returnStat = PdfDIBRender(&mySymbol,
 &myRenderInfo,
 PTRUE, /* include file header */
 pLineBuf,
 PdfSinkStream, /* callback function */
 fp); /* pUser */
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfDIBRender() status = %d”, returnStat);
 }

 free(pLineBuf);
 fclose(fp);

}

5.4.4 PdfSinkFd
Example:

#include “pdfenc.h”
#include “pdfrend.h”
#include “sinkfile.h”

void main(void)
{
 PDFSYMBOL mySymbol;
 PDFRENDER myRenderInfo;
 unsigned long lineBufSize;
 char pLineBuf; /* allocated renderer working memory */
 int fd;
 PERERROR returnStat = PERR_OK;

 fd = creat(“output.bmp”, S_IWRITE | O_CREAT);
 if(fd == -1)
 {
 printf(“*** ERROR Opening output.bmp errno = %d”, errno);
 }

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 42 -

 returnStat = PdfDIBQuery(&mySymbol,
 &myRenderInfo,
 PTRUE, /* include file header */
 PDFNULL,
 &lineBufSize);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfDIBQuery() status = %d”, returnStat);
 }

 pLineBuf = malloc(lineBufSize);
 if(pLineBuf == PDFNULL)
 {
 printf(“*** ERROR – NO MEMORY”);
 exit(0);
 }

 returnStat = PdfDIBRender(&mySymbol,
 &myRenderInfo,
 PTRUE, /* include file header */
 pLineBuf,
 PdfSinkFd, /* callback function */
 &fd); /* pUser */
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfDIBRender() status = %d”, returnStat);
 }

 free(pLineBuf);
 close(fd);

}

5.5 Device-Independent Bitmap Rendering Routines

5.5.1 PdfDIBQuery
Description:
This function returns the total number of bytes the rendered symbol will require, as well as the
number of bytes to render a single "line" of the symbol.

The purpose of this API function is to allow for a dynamic environment for rendering. The
symbol may vary significantly depending on how much data is to be encoded and the rendering
size requirements. If the user is rendering multiple symbols to fit in different printable areas, this
API makes it easier to determine the actual amount of memory required to render the symbol.
Also, if memory is a critical issue, you can either render one line of the symbol at a time or all of
it at once.

Prototype:
#include “pdfrend.h”

PDFERROR PDFAPI PdfDIBQuery(PDFSYMBOLCPTR pSymbol,
 PDFRENDERCPTR pRenderInfo,
 PDFBOOL bIncludeFileHdr,
 unsigned long PDFPTR *pTotalSize,
 unsigned long PDFPTR *pLineBufSize);

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 43 -

Arguments:
pSymbol a pointer to a PDFSYMBOL structure.

pRenderInfo a pointer to a PDFRENDER structure (defined in
pdfrend.h).

bIncludeFileHdr Boolean value indicated to include the
BITMAPFILEHEADER header information when creating
the output. If the output is going to a file, this should be
PTRUE. If it is going to memory, it should probably be
PFALSE.

pTotalSize a pointer to a variable that will receive the total size in
bytes of the DIB representing the PDF417 symbol. This
may be NULL if this information is not required.

pLineBufSize a pointer to a variable that will receive the size in bytes of
the temporary line buffer required by the renderer. This
may be NULL if this information is not required.

NOTES:

• The include file pdfrend.h contains all of the type definitions and prototypes for the
render API functions.

• Either pTotalSize or pLineBufSize may be NULL, but not both.

• The value output through pLineBufSize represents the minimum size of the line
buffer that will be needed by PdfDIBRender.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 44 -

5.5.2 PdfDIBRender:
Description:
This function performs the actual formatting of the DIB image.

Prototype:
#include “pdfrend.h”

PDFERROR PDFAPI PdfDIBRender(PDFSYMBOLCPTR pSymbol,
 PDFRENDERCPTR pRenderInfo,
 PDFBOOL bIncludeFileHdr,
 unsigned char PDFPTR *pLineBuf,
 PDFDATASINK pSinkFcn,
 void PDFPTR *pUser);

Arguments:
pSymbol a pointer to a PDFSYMBOL structure.

pRenderInfo a pointer to a PDFRENDER structure (defined in
pdfrend.h)

bIncludeFileHdr Boolean value indicated to include the
BITMAPFILEHEADER header information when creating
the output. If the output is going to a file, this should be
PTRUE. If it is going to memory, it should probably be
PFALSE.

pLineBuf a pointer to an area of memory that PdfDIBRender can use
as working storage. The minimum size of this buffer can be
obtained from PdfDIBQuery.

pSinkFcn a pointer to the output callback function that will be called
to pass the data out.

pUser user pointer that will be passed to the callback function.

NOTES:

• The include file pdfrend.h contains all of the type definitions and prototypes for the
render API functions.

• Refer to PdfDIBQuery for further documentation on structures.

• This function assumes that the memory allocated for pLineBuf is large enough. No
error checking is performed in the function for memory overwriting.

• If the graphics data is going to be output to a file and then used, the operating system
needs to know the type of file it is. To make sure that the file header is written to the
output file, set bIncludeFileHdr to PTRUE. If the file will not be used as an actual
bitmap file, no file header is required and this value can be set to PFALSE.

Example:
#include “pdfenc.h”
#include “pdfrend.h”

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 45 -

#include “sinkfile.h”

void main(void)
{
 PDFSYMBOL userSymbol;
 PDFRENDERINFO renderInfo;
 PDFBOOL bIncludeFileHdr;
 unsigned long lineBufSize;
 unsigned char *pLineBuf;
 FILE *fout;
 char outFile[15];
 PDFERROR returnStat = PERR_OK;

 renderInfo.modWidth = (unsigned int) aspectRatio.moduleWidth;
 renderInfo.modHeight = (unsigned int) aspectRatio.moduleHeight;
 renderInfo.shaveWidth = 0;
 renderInfo.shaveHeight = 0;
 renderInfo.bIncludeQuietZones = PTRUE;

 /*
 * Since routine is writing to a file, the header
 * information is required.
 */
 bIncludeFileHdr = PTRUE;

 returnStat = PdfDIBQuery(&userSymbol,
 &renderInfo,
 bIncludeFileHdr,
 PDFNULL,
 &lineBufSize);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfDIBQuery() status = %d”, returnStat);
 }

 pLineBuf = malloc(lineBufSize);
 if(pLinebuf == PDFNULL)
 {
 printf(“*** ERROR – NO MEMORY”);
 exit(0);
 }

 strcpy(outFile, ”output.bmp”);
 fout = fopen(outFile, "w");
 if(fout == PDFNULL)
 {
 printf(“*** ERROR Opening %s”, outFile);
 exit(0);
 }

 returnStat = PdfDIBRender(&userSymbol,
 &renderInfo,
 bIncludeFileHdr,
 pLineBuf,
 PdfSinkStream,
 fout);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfDIBRender() status = %d”, returnStat);
 }

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 46 -

 fclose(fout);
 free(pLineBuf);

}

5.6 Tagged Image File Format (TIFF) Rendering Routines

5.6.1 PdfTIFFQuery:
Description:
This function returns the total number of bytes the rendered symbol will require, as well as the
number of bytes to render a single "line" of the symbol.

The purpose of this API function is to allow for a dynamic environment for rendering. The
symbol may vary significantly depending on how much data is to be encoded and the rendering
size requirements. If the user is rendering multiple symbols to fit in different printable areas, this
API makes it easier to determine the actual amount of memory required to render the symbol. If
memory is a critical issue, you can either render one line of the symbol at a time or all of it at
once.

Prototype:
#include “pdfrend.h”

PDFERROR PDFAPI PdfTIFFQuery(PDFSYMBOLCPTR pSymbol,
 PDFRENDERCPTR pRenderInfo,
 unsigned long PDFPTR *pTotalSize,
 unsigned long PDFPTR *pLineBufSize);

Arguments:
pSymbol a pointer to a PDFSYMBOL structure.
pRenderInfo a pointer to a PDFRENDER structure (defined in pdfrend.h).
pTotalSize a pointer to a variable that will receive the total size in bytes of
the TIFF representing the PDF417 symbol. This may be NULL if this information is
not required.
pLineBufSize a pointer to a variable that will receive the size in bytes of the
temporary line buffer required by the renderer. This may be NULL if this
information is not required.

NOTES:

• The include file pdfrend.h contains all of the type definitions and prototypes for the
render API functions.

• Either pTotalSize or pLineBufSize may be NULL, but not both.

• The value output through pLineBufSize represents the minimum size of the line
buffer that will be needed by PdfTIFFRender.

• This function assumes that the memory allocated for pLineBuf Size is large enough.
No error checking is performed in the function for memory overwriting.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 47 -

5.6.2 PdfTIFFRender:
Description:
This function performs the actual formatting of the TIFF image.

Prototype:
#include “pdfrend.h”

PDFERROR PDFAPI PdfTIFFRender(PDFSYMBOLCPTR pSymbol,
 PDFRENDERCPTR pRenderInfo,
 PDFTIFFCPTR pTiffInfo,
 unsigned char PDFPTR *pLineBuf,
 PDFDATASINK pSinkFcn,
 void PDFPTR *pUser);

Arguments:
pSymbol a pointer to a PDFSYMBOL structure.
pRenderInfo a pointer to a PDFRENDER structure (defined in pdfrend.h).
pTiffInfo a pointer to a PDFTIFF structure (defined in pdfrend.h). This
structure contains TIFF-specific information.
pLineBuf a pointer to an area of memory that PdfTIFFRender can use as working
storage. The minimum size of this buffer can be obtained from PdfTIFFQuery.
pSinkFcn a pointer to the output callback function that will be called to pass
the data out.
pUser a user pointer that will be passed to the callback function.

A PDFTIFF structure is defined as follows:
struct sPdfTIFFInfo
{
 unsigned long xRes; /* Desired x resolution. */
 unsigned long yRes; /* Desired y resolution. */
 int byteOrder; /* Byte order used within the TIFF file. */
};
typedef struct sPdfTIFFInfo PDFTIFF;
typedef struct sPdfTIFFInfo PDFPTR *PDFTIFFPTR;
typedef const struct sPdfTIFFInfo PDFPTR *PDFTIFFCPTR;

The members of this structure are as follows:

xRes Horizontal resolution (in pixels per inch) to be indicated in the file.

yRes Vertical resolution (in pixels per inch) to be indicated in the file.

byteOrder The byte order to use when creating the file. The TIFF file format allows
the user of either little-endian (Intel) or big-endian (Motorola) format.
This member must be set to BYTE_ORDER_LE to specify Intel format or
BYTE_ORDER_BE to specify Motorola format. Intel format is typically
used on PC’s, while Motorola format is typically used in Macintosh
systems.

NOTES:

• The include file pdfrend.h contains all of the type definitions and prototypes for the
render API functions.

• Refer to PdfTIFFQuery for further documentation on structures.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 48 -

Example:
#include “pdfenc.h”
#include “pdfrend.h”
#include “sinkfile.h”

void main(void)
{
 PDFSYMBOL userSymbol;
 PDFRENDERINFO renderInfo;
 PDFBOOL bIncludeFileHdr;
 unsigned long lineBufSize;
 unsigned char *pLineBuf;
 FILE *fout;
 char outFile[15];
 PDFERROR returnStat = PERR_OK;

 renderInfo.modWidth = (unsigned int) aspectRatio.moduleWidth;
 renderInfo.modHeight = (unsigned int) aspectRatio.moduleHeight;
 renderInfo.shaveWidth = 0;
 renderInfo.shaveHeight = 0;
 renderInfo.bIncludeQuietZones = PTRUE;

 /*
 * Since routine is writing to a file, the header
 * information is required.
 */
 bIncludeFileHdr = PTRUE;

 returnStat = PdfTIFFQuery(&userSymbol,
 &renderInfo,
 bIncludeFileHdr,
 PDFNULL,
 &lineBufSize);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfTIFFQuery() status = %d”, returnStat);
 }

 pLineBuf = malloc(lineBufSize);
 if(pLineBuf == PDFNULL)
 {
 printf(“*** ERROR – NO MEMORY”);
 exit(0);
 }

 strcpy(outFile, ”output.tif”);
 fout = fopen(outFile, "w");
 if(fout == PDFNULL)
 {
 printf(“*** ERROR Opening %s”, outFile);
 exit(0);
 }

 returnStat = PdfTIFFRender(&userSymbol,
 &renderInfo,
 bIncludeFileHdr,
 pLineBuf,
 PdfSinkStream,
 fout);
if(returnStat != PERR_OK)

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 49 -

{
 printf(“*** ERROR calling PdfTIFFRender() status = %d”, returnStat);
 }

 fclose(fout);
 free(pLineBuf);
}

5.7 Font Based Rendering Routines

5.7.1 PdfFontInitRender
Description:
This function gives the user the ability to re-map the resultant font characters.

The purpose of this API function is to allow the user to change the font character set to map to
any font definition file. It is not a required function as the default font character set is loaded at
runtime and will most likely work for most environments.

The NOTE below in the sample code is a warning to be careful as to what buffer size (width &
height) you choose to put the symbol font characters into. If the size calculations result in a
fractional part then the symbol could contain a partial rendering with a font character which
would result in the symbol being improperly generated. A check is performed to insure that the
font characters that are generated will fit into the receiving area. An error code of 44 is issued
when the font characters will not fit into the symbol and the font characters are not moved into
the receiving area. To get the complete symbol you would exceed the maximum area for
rendering the symbol thus the instructions for rounding down so as NOT to exceed the required
area for the symbol to render to.

Prototype:
#include “pdfrend.h”

PDFERROR PDFAPI PdfFontInitRender(const unsigned char PDFPTR *pCharSet);

Arguments:
pCharSet a pointer to an unsigned character array which contains the new font
character set.

NOTES:

• The include file pdfrend.h contains all of the type definitions and prototypes for the
render API functions.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 50 -

5.7.2 PdfFontRender:
Description:
This function performs the actual output of the font characters to an output buffer. The function
will render the symbol to a font character set which can then be sent to a printer with the font
definition loaded which prints the appropriate bar, space pattern. There is one issue that is
important here and will need to be understood for expected behavior. The output buffer is the
area where the symbol’s font characters are placed with whatever alignment is chosen. It is not
the determining factor for the PDF417 symbol shape. Be aware that the symbol shape has
already been determined by the setting of the user parameters. The symbol generated must fit
into the output buffer or an error will occur. An error code of 44 is issued when the font
characters required to render the symbol will not fit into the output buffer. The font characters
are not moved into the output buffer and a space filled buffer is returned. This error occurs when
the number of rows or columns of the output buffer is smaller than the number of rows and
columns needed to render the symbol.

Prototype:
#include “pdfrend.h”

PDFERROR PDFAPI PdfFontRender(PDFSYMBOLCPTR pSymbol,
 PDFRENDERCPTR pRenderInfo,
 PDFBUFFERINFOCPTR pBuffInInfo,
 PDFBUFFERINFOPTR pBuffOutInfo,
 char PDFPTR *pOutputBuffer);

Arguments:

pSymbol a pointer to a PDFSYMBOL structure.

pRenderInfo a pointer to a PDFRENDER structure (defined in
pdfrend.h).

pBuffInInfo a pointer to a PDFBUFFERINFO structure (defined in
pdfrend.h).

pBuffOutInfo a pointer to a PDFBUFFERINFO structure (defined in
pdfrend.h).

pOutputBuffer a pointer to character array to receive the font characters.

A PDFBUFFERINFO structure is defined as follows:
struct sPdfBufferInfo
{
 unsigned short nWidth;
 unsigned short nHeight;
 unsigned char horizAlign;
 unsigned char vertAlign;
};
typedef struct sPdfBufferInfo PDFBUFFERINFO;
typedef struct sPdfBufferInfo PDFPTR *PDFBUFFERINFOPTR;
typedef const struct sPdfBufferInfo PDFPTR *PDFBUFFERINFOCPTR;

The members of this structure are as follows:

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 51 -

nWidth Width of the buffer (# of columns of font characters). Note that the user
parameters minCols and maxCols, used to calculate the actual
number of symbol columns set for the symbol shape must fit into this
value. Symbol columns multiplied by 4 is the number of font
character columns required to render the symbol.

nHeight Height of the buffer (# of rows of font characters). Note that the user
parameters, minRows and maxRows, used to calculate the actual
number of symbol rows set for the symbol shape must fit into this value.

horizAlign The required horizontal alignment of the font characters within a single
row. The choices are (L)eft, (C)enter, or (R)ight. The default value is Left.

vertAlign The required vertical alignment of the rows in the buffer. The choices are
(T)op, (C)enter, or (B)ottom. The default value is Top.

NOTES::

• The include file pdfrend.h contains all of the type definitions and prototypes for the
render API functions.

• The font characters are positioned in the output buffer according to the horizontal and
vertical requirements. It the output buffer is larger than the generated font character array
then it is filled with the space font character.

Example:
#include “pdfenc.h”
#include “pdfrend.h”

void main(void)
{
 char fontCharSet[16];
 PDFSYMBOL userSymbol;
 PDFRENDERINFO renderInfo;
 PDFBUFFININFO buffInInfo, buffOutInfo;
 unsigned int fontRows, fontCols;
 char PDFPTR *pBuffer;
 PDFERROR returnStat = PERR_OK;

 /*
 * The setting of the font character array is NOT required.
 * The following is an example of setting the font character set,
 * if the default character set does not work with your font definition.
 * There are 16 code points defined for the default font.
 */
 strncpy(fontCharSet,” ABCDEFGHIJKLMNO”, 16);
 returnStat = PdfFontInitRender(fontCharSet);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfFontInitRender() status = %d”,
 returnStat);
 }

 renderInfo.modWidth = (unsigned int) aspectRatio.moduleWidth;

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 52 -

 renderInfo.modHeight = (unsigned int) aspectRatio.moduleHeight;
 renderInfo.shaveWidth = 0;
 renderInfo.shaveHeight = 0;
 renderInfo.bIncludeQuietZones = PFALSE;

 /*
 * Allocate enough memory to hold font characters in the output
 * buffer.
 *
 * The output area will need to be calculated by using the area
 * in inches then converting to pixels and finally converting
 * to characters. The API will convert to symbol rows and columns
 * internally and fill the unused area with spaces. The print
 * routine will print the entire area.
 *
 * e.g.:
 * Width = 1.50 inches
 * Height = 0.75 inches
 *
 * To convert to pixels with 300 dpi:
 * 300 * 1.5 = 450 pixels
 * 300 * .75 = 225 pixels
 *
 * To convert to chars from pixels with a 10 millage font definition
 * of 12 pixels per character width and 9 pixels per character height:
 * 450 / 12 = 37.5 characters in 1 row
 * 225 / 9 = 25 character rows
 *
 * NOTE: Round down the values because the quarantee is that the symbol
 * will NOT exceed this area when it is set with font characters.
 *
 * Width = 37 characters maximum
 * Height = 25 characters maximum
 */
 fontCols = 37;
 fontRows = 25;

 pBuffer = (char *) malloc(sizeof(PDFFONTOUTCOBOL) +
 (fontRows * fontCols));
 if(pBuffer == PDFNULL)
 {
 printf("\n***** NO MEMORY - malloc() *****");
 return;
 }

 buffInInfo.nWidth = (unsigned short) fontCols;
 buffInInfo.nHeight = (unsigned short) fontRows;
 buffInInfo.horizAlign = 'R'; /* Align right horizontally */
 buffInInfo.vertAlign = 'B'; /* Align bottom vertically */

 /*
 * Upon return from PdfFontRender(), the output buffer contains the
 * font characters which, if sent to a printer with the appropriate
 * font definition loaded, will print the PDF417 symbol.
 */
 returnStat = PdfFontRender(&userSymbol,
 &renderInfo,
 &buffInInfo,
 &buffOutInfo,
 pBuffer);
 if(returnStat != PERR_OK)
 {
 printf(“*** ERROR calling PdfFontRender() status = %d”, returnStat);

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 53 -

 }
}

5.8 EBCDIC-to-ASCII and Utility Routines
For most implementations of the C API, you will be using the ASCII character set for input data,
however, there may be cases where you want to implement the PDF417 Encoder in C on
mainframe or mid-range systems which use the EBCDIC character set. The encoder library
provides facilities to handle EBCDIC-to-ASCII conversions automatically for the internal data
structures within the C API. With regard to the input data to be encoded, the conversion decision
is left up to the user. To accommodate this possibility, there are API’s which are available for
translating the EBCDIC data to ASCII.

5.8.1 PdfEtoA
Description:
This function performs an unconditional conversion of EBCDIC character data to ASCII
character data.

Prototype:
#include “pdfenc.h”

PDFERROR PDFAPI PdfEtoA(void PDFPTR *pDest,
 const void PDFPTR *pSrc,
 unsigned int numChars);

Arguments:

pDest a pointer to the destination area.

pSrc a pointer to the source area.

numChars the number of characters to translate.

Example:
#include “pdfenc.h”

void main(void)
{
 unsigned int nBytes;
 char inData[200];
 unsigned char aData[200];
 unsigned char *pData;

 strcpy(inData,"This is a test of the Silver Bay Software"
 " PDF417 Encoder. The error correction will encode at "
 "level 3 with ECC padding.");
 nBytes = strlen(inData);

 /*
 * When executing this in an EBCDIC environment then need to
 * convert the data to ASCII.
 */
 pData = aData;
 PdfSet(pData,'\0', nBytes);

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 54 -

 PdfEtoA(pData, inData, nBytes);

}

5.8.2 PdfSet
Description:
This function is a substitute for memset(). There is no formal requirement of having the C
development environment when using the encoder so the API provides this functionality.

Prototype:
#include “pdfenc.h”

PDFERROR PDFAPI PdfSet(void PDFPTR *pBytes,
 int c,
 unsigned int nBytes);

Arguments:

pBytes a pointer to the area of memory to set.

c the character to set.

nBytes the number of bytes to set.

NOTES:

• If a NULL is passed in for the pointer to set, no action is performed.

Example:
#include “pdfenc.h”

void main(void)
{
 unsigned int nBytes;
 char inData[200];
 unsigned char aData[200];
 unsigned char *pData;

 strcpy(inData,"This is a test of the Silver Bay Software"
 " PDF417 Encoder.");
 nBytes = strlen(inData);

 /*
 * When executing this in an EBCDIC environment then need to
 * convert the data to ASCII.
 */
 pData = aData;
 PdfSet(pData, '\0', nBytes);

}

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 55 -

6 COBOL Language API
In order to simplify the programming interface, the COBOL API is somewhat less flexible than
the C API. In particular, many of the steps that are performed individually in the C API are
combined into single operations in the COBOL API.

6.1.1 Overview of the Encode Process
There are essentially four steps to using the encoder. Briefly, they are as follows:

1. Font information initialization.

2. Encoder parameter initialization.

3. Perform the data encode.

4. Print the symbol. This step is the user’s responsibility, and is not performed with
functions provided by the encoder API.

If additional symbols need to be generated, the process may be repeated starting with either Step
2 (if the parameters need to be modified) or Step 3 (if the parameters do not need to be changed).

Each of these steps is described in more detail below. Manual pages for the individual API
subroutines are provided at the end of this section.

6.1.2 Font Information Initialization
The COBOL API for the encoder is restricted to font rendering. Graphics rendering is not
supported.

Before the encoding API function is called, the encoder might require initialization. This process
indicates to the encoder which font character values it should use to output the encoded symbol.
This is important because different printers result in different character translations between host
and printer. The PDF417 encoder compensates for such variations by outputting different values,
by using different font files, or both. Be sure you read Section 9 for information related to how to
print the symbol characters properly in your environment.

The font initialization function does not need to be called before every symbol encoded. It only
needs to be called once as part of program initialization. If this function is not called, the default
values indicated in the API definition are used.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 56 -

6.1.3 Encoder Parameters Initialization
As described in Section 3, there are a variety of control parameters that will affect how a
PDF417 symbol is generated. The COBOL API allows to programmer to provide this
information to the encoder using a record formatted as shown below:

01 PDF417-PARAMETER-INFO-REC.
 03 PDF-VERSION PIC 9(4) VALUE 200.
 03 NUM-BYTES-TO-ENCODE PIC 9(4) VALUE 0.
 03 ASPECT-RATIO.
 05 SYMBOL-HEIGHT PIC 9(2) VALUE 1.
 05 SYMBOL-WIDTH PIC 9(2) VALUE 2.
 03 ECC-TYPE PIC 9(1) VALUE 1.
 03 ECC-VALUE PIC 9(3) VALUE 5.
 03 NO-PAD-ECC-FLAG PIC X(1) VALUE 'F'.
 03 INPUT-DATA-FORMAT PIC X(1) VALUE 'N'.
 03 SYMBOL-TYPE PIC X(1) VALUE 'S'.
 03 ENCODE-METHOD PIC X(1) VALUE 'O'.
 03 PRINT-SYMBOL-HORIZ-ALIGN PIC X(1) VALUE 'L'.
 03 PRINT-SYMBOL-VERT-ALIGN PIC X(1) VALUE 'T'.
 03 EBCDIC-TO-ASCII-FLAG PIC X(1) VALUE 'Y'.

The table below summarizes the individual parameters. Certain of them are then discussed in
more detail after the table.

Item Meaning / Usage

PDF-VERSION This field is used for forward compatibility, in case the format of the
PDF417-PARAMETER-INFO-REC changes in the future.
As of this writing, this field must be set to a value of 200, indicating the
2.x data format above.

NUM-BYTES-TO-ENCODE This value is set with the number of characters of input data that are to be
encoded. This must match the length of the data set passed to the
PDFENCOD procedure.

ASPECT-RATIO.

 SYMBOL-HEIGHT

 SYMBOL-WIDTH

These values control the preferred aspect ratio of the output symbol. See
Section 3.2.5 for more details on aspect ratio.

ECC-TYPE How the error correction is being specified. There are three choices:
0 Use the AIM recommended defaults. In this case, the encoder will

automatically follow the recommendations in the PDF417
symbology standard. NOTE: If the this value is set, the ECC-
VALUE parameter will be ignored

1 Use a specific error correction level. In this case, the encoder will
use the specific error correction level you specify in the ECC-
VALUE parameter.

2 Select the ECC level as a percentage of the data codeword count.
If you select this option, you also specify a percent in the ECC-
VALUE parameter. The encoder will choose the lowest level of
error correction that includes at least this percentage of ECC
codewords. For example, if you specify 10%, and the symbol has
250 codewords, the encoder will include at least 25 error
correction codewords. Since one of the levels below must be
chosen, the encoder will, in this case, use level 4, which includes
32 error correction codewords.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 57 -

Item Meaning / Usage

ECC-VALUE The value of this parameter depends on the value of the ECC-TYPE
parameter:

ECC-TYPE = 0 In this case, this value is ignored and should be set to
zero.

ECC-TYPE = 1 This value encodes the ECC level (1-8) that should
be used when constructing the symbol.

ECC-TYPE = 2 This value contains the percentage of codewords that
should be ECC codewords.

NO-PAD-ECC-FLAG Whether to suppress the default “pad with ECC” behavior of the encoder.
(See Section 3.2.6)

‘T’ Padding will not be done using ECC codewords.
‘F’ Padding will be done using ECC codewords. (This is the

recommended setting).
The default value is ‘F’.

INPUT-DATA-FORMAT How the input data format is being specified. (See Section 3.3.) There
are three choices:

‘N’ None default (No escape sequences present in data).
‘E’ ECI format (Extended Channel Interpretations).
‘G’ GLI format (Global Label Identifier).

The default value is ‘N’.

SYMBOL-TYPE What type of symbol will be generated. (See Section 2.4) There are two
choices:

‘S’ A standard PDF417 symbol will be generated.
‘T’ The encoder will generate a “Truncated” symbol – one that lacks

the right row indicators and stop pattern.
The default value is ‘S’.

ENCODE-METHOD How the input data will be encoded. (See Section 3.1) There are two
choices:

‘O’ Optimal.
‘B’ Binary.

The default value is ‘O’.

PRINT-SYMBOL-HORIZ-ALIGN How the font characters will be horizontally aligned in the output area.
There are three choices:

‘L’ Left
‘C’ Center
‘R’ Right

The default value is ‘L’

PRINT-SYMBOL-VERT-ALIGN How the font characters will be vertically aligned in the output table.
There are three choices:

‘T’ Top
‘C’ Center
‘B’ Bottom

The default value is ‘T’.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 58 -

Item Meaning / Usage

EBCDIC-TO-ASCII-FLAG Indicates if the encoder should treat the input data as EBCDIC and
convert it to ASCII. There are two choices:

‘T’ True
‘F’ False

The default value is ‘T’.

6.1.4 COBOL Output record Initialization
The output of the PDF417 encoder is a table of characters which, when printed using the
provided custom PDF417 font, renders a PDF417 symbol. The actual size of this table can vary
greatly, as it’s based on the amount of data being encoded, the ECC level being used, the aspect
ratio of the symbol, and the font being used.

As the application programmer, you must determine the appropriate size of this table, declare it
in your application program, and initialize it correctly.

The general structure of the output record is as follows:
01 PDF417-OUTPUT-REC.
 05 PRINT-SYMBOL-WIDTH PIC 9(3) VALUE W.
 05 PRINT-SYMBOL-HEIGHT PIC 9(3) VALUE R.
 05 RESULT-CODE PIC 9(3) VALUE 0.
 05 OUTPUT-LINES PIC X(W) OCCURS R.

where W is the width of each row in the table and R is the number of rows in the table. The
PRINT-SYMBOL-WIDTH, PRINT-SYMBOL-HEIGHT, and RESULT-CODE fields are always
required and must be declared as PIC (3) fields. The OUTPUT-LINES field is also required;
however, its size must be determined by the programmers, and then specified in the PRINT-
SYMBOL-WIDTH and PRINT-SYMBOL-HEIGHT fields. For example, if we required 8 lines of
output, each 43 characters long, then the output record structure would be declared and
initialized as follows:

01 PDF417-OUTPUT-REC.
 05 PRINT-SYMBOL-WIDTH PIC 9(3) VALUE 43.
 05 PRINT-SYMBOL-HEIGHT PIC 9(3) VALUE 8.
 05 RESULT-CODE PIC 9(3) VALUE 0.
 05 OUTPUT-LINES PIC X(43) OCCURS 8.

The important point here is that PRINT-SYMBOL-WIDTH and PRINT-SYMBOL-HEIGHT
must precisely reflect the size of the OUTPUT-LINES table that has been declared in the record.

Note that it is not strictly required that a table be used to declare the output lines. In certain
circumstances, it may be more convenient to the application program to have each of the output
lines of the encoder in a separate field (for example, this makes interfacing with a printer DDS
on an AS/400 simpler). The following record could have been used as it represents exactly the
same storage:

01 PDF417-OUTPUT-REC.
 05 PRINT-SYMBOL-WIDTH PIC 9(3) VALUE 43.
 05 PRINT-SYMBOL-HEIGHT PIC 9(3) VALUE 8.
 05 RESULT-CODE PIC 9(3) VALUE 0.
 05 OUTPUT-LINE1 PIC X(43).
 05 OUTPUT-LINE2 PIC X(43).
 05 OUTPUT-LINE3 PIC X(43).

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 59 -

 05 OUTPUT-LINE4 PIC X(43).
 05 OUTPUT-LINE5 PIC X(43).
 05 OUTPUT-LINE6 PIC X(43).
 05 OUTPUT-LINE7 PIC X(43).
 05 OUTPUT-LINE8 PIC X(43).

Determining the appropriate dimension of the output area requires an understanding of the
structure of a PDF417 symbol. Please read Section 2.1 and Section 2.2 if you have not already
done so.

The font that is used to print PDF417 characters is one module high. Thus, you will require one
line in the output area for each row that may appear in the symbol. Each character in the custom
font represents four modules horizontally. Thus, for each character you allocate in each output
line, you will have room for four modules. Thus, in our example above, the output symbol is
limited to 8 rows, and 43 * 4 = 172 modules. Using the procedure in Section 2.2.2, we can see
that the 172 modules corresponds to

INTEGER((172 – 73) / 17) = 5

data columns if the symbol is to include the white space, and
INTEGER((172 – 69) / 17) = 6

data columns if the symbol is not to include the white space. Assuming the latter for the
moment, this means that the symbol has space for 6*8=48 total codewords.

The more common need, however, is to work backwards from a physical area on paper to
determine what values we should use.

Here is an example: assume we have an area of 1.75 inches by 0.25 inches available to use for
printing and we’re using the 10 mil Xerox font (a 300 dot per inch font). The font’s name is
X5P310; thus, from the name we can see that the module width is 3 and the module height is 10.
(See Section 9.4 for more information on the fonts.)

A module width of 3 pixels at 300 dpi corresponds to a physical module width of 0.010 inches,
while a module height of 10 pixels at 300 dpi corresponds to a physical module height of 0.033
inches. This means that the physical number of modules available in our defined space is:

horizontal_modules = space_available / module_width = 1.75 / 0.010 = 175

vertical_modules = space_available / module_height = 0.25 / 0.033 = 7.5

Since each character in the font encodes four modules, this means that we need to allocate
175/4=43.75 characters horizontally and 7.5 rows to exactly fill this area.

Now obviously we can’t declare a COBOL table that is 43.75 by 7.5; we must decide what to do
with the decimal portion. There are some subtle and complex implications of rounding these
numbers up or down.

Let’s consider rounding the number of rows first. If we round the number of row down (to 7)
this will guarantee that the symbol’s height will never exceed 0.25 inches. The height of the
symbol would be the height of 7 rows of this font:

symbol_height = num_rows * height_of_module = 7 * 0.0333 = 0.233 inches

Thus, if we only allow for 7 rows in our symbol, the maximum possible height is 0.233 inches.
If we round the number of rows up (to 8), we are now increasing the size of the symbol:

symbol_height = num_rows * height_of_module = 8 * 0.0333 = 0.266 inches

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 60 -

Note that the increase in the symbol’s height is not dramatic (only 0.033 inches for this particular
font).

From this we can surmise that if the printed height you’ve specified for your symbol absolutely
cannot be exceeded, then round the number of rows down. Conversely, if the print area is
flexible (especially considering the relatively low overhead of adding an additional row), then
round the number of rows up.
The process of rounding the row width is much more complex, as more than just the decimal
portion will likely need to be added or subtracted to affect the actual width of the PDF417
symbol. From above you can see that adding or subtracting a single row of characters will
change the height of the symbol. However, adding or subtracting a single character to the width
may not change the width of the symbol.

Recall from Section 2.2.2 that the number of data columns in a symbol is related to the available
number of module widths by the expression

data_columns = INTEGER((modules_available – 73) / 17)

or
data_columns = INTEGER((modules_available – 69) / 17)

depending on whether or not the quiet zone is being included in the generated area. Because
each character in the font represents four modules, we can convert these to:

data_columns = INTEGER((chars_across * 4 – 73) / 17)

or
data_columns = INTEGER((chars_across * 4 – 69) / 17)

Rounding the 43.75 up to 44 would have no effect, as this still only allows 6 data columns:
(44 * 4 – 69) / 17 = 6.29

In order to increase the number of data columns from 6 to 7, we would have to increase the width
of each row to 47 characters.

(47 * 4 – 69) / 17 = 7.00

Note that unlike adding a single row to the symbol, adding an additional data column can have a
much more dramatic impact on the overall width, since each PDF417 data column consists of 17
modules. In our example, the overall width would go from 1.71 inches to 1.84.

6.1.5 Encoding Data
The actual data encoding process is performed using one function. The function is:

PDFENCOD This function will generate the font characters, given the
input data, which can then be passed on to the printer.

Given that the COBOL information record and output record have been initialized appropriately,
this function will encode the input data and generate a table of font characters that, when printed
with the appropriate font definition, will result in a PDF417 symbol.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 61 -

6.1.6 Printing the Symbol
Printing the symbol is your (the user’s) responsibility. Because the printing requirements vary so
much from system to system and application to application, the API provides no functions to
perform the printing operation.

6.1.7 Result Codes
Each API function returns a status result value. The COBOL API does not rely on the special
register RETURN CODE since this may or may not exist in your COBOL language. Instead, it
uses a field in the output record as described above. If the encode and symbol generation is
successful, the status will return 0. Refer to Section 10.1 for expected values and detailed
definitions.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 62 -

7 COBOL Language API Functions
This section of the document provides detailed descriptions of each of the COBOL API routines.

7.1.1 PDFINITF
Description:
This function gives the user the ability to re-map the resultant font characters. The API function
is provided to allow the user to change the font character set to map to any font definition file. It
is not a required function as the default font character set is loaded at runtime and will work for
most environments.

The primary situation in which this function might need to be called is in an EBCDIC
environment printing to a Xerox printer. The encoder will, by default, use the characters “space”
and “A” through “O” in generating the barcode output. On an EBCDIC computer, these will be
the EBCDIC values of the characters. The Xerox printer, however, expects to receive the
characters in ASCII. Thus, a conversion must be performed somewhere. This can be done by
changing the characters used by the encoder, or via some other means.

Call:
WORKING STORAGE.
 01 FONT-CHAR-SET.
 03 PDFFONT-SPACE PIC X(1) VALUE ‘ ‘.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘A’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘B’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘C’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘D’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘E’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘F’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘G’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘H’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘I’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘J’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘K’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘L’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘M’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘N’.
 03 PDFFONT-CHAR1 PIC X(1) VALUE ‘O’.

CALL ‘PDFINITF’ USING FONT-CHAR-SET.

Parameters:
FONT-CHAR-SET a data type (length 16) which contains the new font character set.

NOTES:

• Be sure you read Section 9 and the sections appropriate for your printing environment.

• If you are using the encoder as an AS/400 ILE service program, remember to include
LINKAGE TYPE IS PROCEDURE in the call statement. Refer to the AS/400 sample
programs.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 63 -

The parameter used by this function is a data type with 16 elements. These elements are
described as follows:

Element Index Contents – using 4 module width rectangles

PDFFONT-SPACE 0x00 The “full width blank” character.

PDFFONT-CHAR1 0x01 The character containing the first (from right) rectangle.

PDFFONT-CHAR2 0x02 The character containing the second rectangle.

PDFFONT-CHAR3 0x03 The character containing the first & second rectangle.

PDFFONT-CHAR4 0x04 The character containing the third rectangle.

PDFFONT-CHAR5 0x05 The character containing the third & first rectangle.

PDFFONT-CHAR6 0x06 The character containing the third & second rectangle.

PDFFONT-CHAR7 0x07 The character containing the third, second & first rectangle.

PDFFONT-CHAR8 0x08 The character containing the fourth rectangle.

PDFFONT-CHAR9 0x09 The character containing the fourth & first rectangle.

PDFFONT-CHAR10 0x0A The character containing the fourth & second rectangle.

PDFFONT-CHAR11 0x0B The character containing the fourth, second & first rectangle.

PDFFONT-CHAR12 0x0C The character containing the fourth & third rectangle.

PDFFONT-CHAR13 0x0D The character containing the fourth, third & first rectangle.

PDFFONT-CHAR14 0x0E The character containing the fourth, third & second rectangle.

PDFFONT-CHAR15 0x0F The “full width black” character (All four rectangles).

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 64 -

Default values output by the PDF417 encoder (in hexadecimal):

Element ASCII EBCDIC

PDFFONT-SPACE 0x20 0x40

PDFFONT-CHAR1 0x41 0xC1

PDFFONT-CHAR2 0x42 0xC2

PDFFONT-CHAR3 0x43 0xC3

PDFFONT-CHAR4 0x44 0xC4

PDFFONT-CHAR5 0x45 0xC5

PDFFONT-CHAR6 0x46 0xC6

PDFFONT-CHAR7 0x47 0xC7

PDFFONT-CHAR8 0x48 0xC8

PDFFONT-CHAR9 0x49 0xC9

PDFFONT-CHAR10 0x4A 0xD1

PDFFONT-CHAR11 0x4B 0xD2

PDFFONT-CHAR12 0x4C 0xD3

PDFFONT-CHAR13 0x4D 0xD4

PDFFONT-CHAR14 0x4E 0xD5

PDFFONT-CHAR15 0x4F 0xD6

See the Font Initialization Values table later in this document for the proper values for your
environment.

Example:
.

000450 WORKING-STORAGE SECTION.
.

000470 01 FONT-CHAR-SET PIC X(16).

.

000980***
000990 PROCEDURE DIVISION.
001000***

.

MOVE “ ABCDEFGHIJKLMNO” TO FONT-CHAR-SET.
CALL 'PDFINITF' USING FONT-CHAR-SET.

.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 65 -

7.1.2 PDFENCOD
Description:
This function will encode the data and generate a table of font characters. The user may change
the values in the information record to manipulate the generated output.

Call:
COPY “NMPDF417.COB”.

CALL ‘PDFENCOD’ USING PDF417-PARAMETER-INFO-REC,
 PDF417-OUTPUT-REC,
 IN-DATA.

Parameters:
PDF417-PARAMETER-INFO-REC the COBOL parameter information record.
PDF417-OUTPUT-REC the COBL output record.
IN-DATA the input data record to be encoded.

A PDF417-PARAMETER-INFO-REC record is defined as follows:
01 PDF417-PARAMETER-INFO-REC.
 03 PDF-VERSION PIC 9(4) VALUE 200.
 03 NUM-BYTES-TO-ENCODE PIC 9(4) VALUE 0.
 03 ASPECT-RATIO.
 05 SYMBOL-HEIGHT PIC 9(2) VALUE 1.
 05 SYMBOL-WIDTH PIC 9(2) VALUE 2.
 03 ECC-TYPE PIC 9(1) VALUE 1.
 03 ECC-VALUE PIC 9(3) VALUE 5.
 03 NO-PAD-ECC-FLAG PIC X(1) VALUE 'F'.
 03 INPUT-DATA-FORMAT PIC X(1) VALUE 'N'.
 03 SYMBOL-TYPE PIC X(1) VALUE 'S'.
 03 ENCODE-METHOD PIC X(1) VALUE 'O'.
 03 PRINT-SYMBOL-HORIZ-ALIGN PIC X(1) VALUE 'L'.
 03 PRINT-SYMBOL-VERT-ALIGN PIC X(1) VALUE 'T'.
 03 EBCDIC-TO-ASCII-FLAG PIC X(1) VALUE 'Y'.

NOTES:

• Provided with the distribution is a copylib that contains these record definitions. This file
is named NMPDF417 on some distributions and PDFCOPYLIB on others.

• The PDF-VERSION field must have a value of 200 for this version of the PDF417
encoder.

• If the fields are not set or are invalid values, then an error may be returned or the
encoder’s behavior may be unpredictable.

• If you are using the encoder as an AS/400 ILE service program, remember to include
LINKAGE TYPE IS PROCEDURE in the call statement. Refer to the AS/400 sample
programs.

A PDF417-OUTPUT-REC record is defined as follows:
01 PDF417-OUTPUT-REC.
 05 PRINT-SYMBOL-WIDTH PIC 9(3) VALUE 37.
 05 PRINT-SYMBOL-HEIGHT PIC 9(3) VALUE 25.
 05 RESULT-CODE PIC 9(3) VALUE 0.
 05 OUTPUT-LINES PIC X(37) OCCURS 25.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 66 -

NOTES:

• The field OUTPUT-LINES is defined as a character table. The PRINT-SYMBOL-
WIDTH and PRINT-SYMBOL-HEIGHT fields must precisely reflect the size of
OUTPUT-LINES, as this is the only mechanism the encode has to determine the size of
this storage area.

• The PDF417 encoder does not RESULT-CODE is used at the receiver field for the status
of the COBOL API. This is defined as a field in the record so as not to rely on the
RETURN CODE processing under COBOL. This API does not set RETURN CODE.

• It is important to realize that the values assigned to the PRINT-SYMBOL-WIDTH and
the PRINT-SYMBOL-HEIGHT are used by the encoder to determine what shape of
symbol will be generated. The PRINT-SYMBOL-HEIGHT has the symbol size
restriction of being within the 3-90 row range.

Example:
.

000450 WORKING-STORAGE SECTION.
.

 01 IN-DATA.
 03 IN-DATA-TEXT PIC X(65) VALUE
 "THIS IS A TEST OF THE SILVER BAY SOFTWARE, LLC. PDF417 E
 - "NCODER.".

 * PDF417 COBOL STRUCTURES USED IN API

 * COPY “NMPDF417.COB”

 01 PDF417-PARAMETER-INFO-REC.
 03 PDF-VERSION PIC 9(4) VALUE 0200.
 03 NUM-BYTES-TO-ENCODE PIC 9(4) VALUE 0.
 03 ASPECT-RATIO.
 05 SYMBOL-HEIGHT PIC 9(2) VALUE 1.
 05 SYMBOL-WIDTH PIC 9(2) VALUE 2.
 03 ECC-TYPE PIC 9(1) VALUE 1.
 88 ECC-DEFAULT VALUE 0.
 88 ECC-LEVEL VALUE 1.
 88 ECC-PERCENT VALUE 2.
 03 ECC-VALUE PIC 9(3) VALUE 5.
 03 NO-PAD-ECC-FLAG PIC X(1) VALUE 'N'.
 88 PAD-ECCLEVEL VALUE 'Y'.
 88 NO-PAD-ECC VALUE 'N'.
 03 INPUT-DATA-FORMAT PIC X(1) VALUE 'N'.
 88 NO-ECI-GLI-PROCESSING VALUE 'N'.
 88 ECI-FORMAT VALUE 'E'.
 88 GLI-FORMAT VALUE 'G'.
 03 SYMBOL-TYPE PIC X(1) VALUE 'S'.
 88 STANDARD-SYMBOL VALUE 'S'.
 88 TRUNCATED-SYMBOL VALUE 'T'.
 03 ENCODE-METHOD PIC X(1) VALUE 'O'.
 88 ENCODE-OPTIMAL VALUE 'O'.
 88 ENCODE-BINARY VALUE 'B'.
 03 PRINT-SYMBOL-HORIZ-ALIGN PIC X(1) VALUE 'L'.
 88 H-ALIGN-CENTERED VALUE 'C'.
 88 H-ALIGN-LEFT VALUE 'L'.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 67 -

 88 H-ALIGN-RIGHT VALUE 'R'.
 03 PRINT-SYMBOL-VERT-ALIGN PIC X(1) VALUE 'T'.
 88 V-ALIGN-CENTERED VALUE 'C'.
 88 V-ALIGN-TOP VALUE 'T'.
 88 V-ALIGN-BOTTOM VALUE 'B'.

 * THIS FLAG WILL NEED TO BE SET TO INDICATE IF THE DATA
 * SHOULD BE CONVERTED FROM EBCDIC TO ASCII DATA PRIOR TO
 * THE ENCODING PROCESS.
 **
 03 EBCDIC-TO-ASCII-FLAG PIC X(1) VALUE 'Y'.
 88 TRANSLATE VALUE 'Y'.
 88 NO-TRANSLATE VALUE 'N'.

 * COBOL OUTPUT RECORD *

 **
 * THE OUTPUT AREA WILL NEED TO BE CALCULATED BY USING THE AREA
 * IN INCHES THEN CONVERTING TO PIXELS AND FINALLY CONVERTING
 * TO CHARACTERS. THE API WILL CONVERT TO ROWS AND COLUMNS
 * INTERNALLY AND FILL THE UNUSED AREA WITH SPACES. THE PRINT
 * ROUTINE WILL PRINT THE ENTIRE AREA.
 *
 * E.G.:
 * WIDTH = 2.00 INCHES
 * HEIGHT = 0.75 INCHES
 *
 * TO CONVERT TO PIXELS WITH 300 DPI:
 * 300 * 2.0 = 600 PIXELS
 * 300 * .75 = 225 PIXELS
 *
 * TO CONVERT TO CHARS FROM PIXELS WITH A 10 MILLAGE FONT
 * DEFINITION OF 12 PIXELS PER CHARACTER WIDTH AND 9 PIXELS
 * PER CHARACTER HEIGHT:
 * 600 / 12 = 50 CHARACTERS IN 1 ROW
 * 225 / 9 = 25 CHARACTER ROWS
 *
 * NOTE: ROUND DOWN THE VALUE BECAUSE THE GUARANTEE IS THAT
 * THE SYMBOL WILL NOT EXCEED THIS AREA WHEN IT IS
 * SET WITH FONT CHARACTERS.
 *
 * WIDTH = 50 CHARACTERS MAXIMUM
 * HEIGHT = 25 CHARACTERS MAXIMUM
 *

 01 PDF417-OUTPUT-REC.
 05 PRINT-SYMBOL-WIDTH PIC 9(3) VALUE 050.
 05 PRINT-SYMBOL-HEIGHT PIC 9(3) VALUE 025.
 05 RESULT-CODE PIC 9(3).
 88 PDF-OK VALUE 000.
 88 PDF-INV-PARAM VALUE 001.
 88 PDF-TOO-LONG VALUE 002.
 05 OUTPUT-LINES PIC X(50) OCCURS 25.
.

000980***
000990 PROCEDURE DIVISION.
001000***

.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 68 -

 MOVE 65 TO NUM-BYTES-TO-ENCODE.
 MOVE 0 TO RESULT-CODE.
 CALL 'PDFENCOD' USING PDF417-PARAMETER-INFO-REC,
 PDF417-OUTPUT-REC,
 IN-DATA.
 IF PDF-OK
 PERFORM PRINT-SYMBOL
 ELSE
 DISPLAY "ENCODER FAILED. "
 " ERROR CODE = " RESULT-CODE
 STOP RUN.

.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 69 -

8 Using the PDF417 Encoder with Other Languages

8.1 RPG
On the AS/400 platform, RPG is a supported language. The basic API is identical to the
COBOL API described in Sections 6 and 7. The sample programs that come with the encoder
provide the corresponding record formats.

8.2 Other Languages
Calling the Silver Bay Software PDF417 encoder API with any language is technically feasible,
however, it is up to the user to setup the interface. The API is written in the ‘C’ language. All
of the parameters must be passed by reference (address), not by value. Within the distribution
there is sample code written for C and COBOL. Depending on the installation platform, there is
example code for other languages. Any use of the encoder with an unsupported language does
not fall into the general product support area; however, documentation of nuances and
environment specifics may be added to this document upon request.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 70 -

9 Font and Printing-Related Information
Using the Silver Bay Software PDF417 encoder and the “font rendering” process, a PDF417
symbol is printed using a special font. This font consists of characters representing bars and
spaces (that is, black regions and white regions). The “output” of the encoder is simply a set of
characters which, when printed using our font, will result in a PDF417 symbol.

The encoder does not actually deliver these characters to the printer; it is the responsibility of
you, the application programmer, to integrate these output characters in your printer output
stream.

Each “row” of characters in the output buffer represents a single row of the PDF417 symbol.
Each output character however represents four adjacent modules.

9.1 PDF417 Font Basics
Most printers today support the use of scaleable fonts, allowing the printer to increase or
decrease code points in size. This enables the printer to render a font at virtually any size. This is
usually accomplished through techniques like pixel averaging and dot resolution enhancement.
Unfortunately, this presents a problem for the PDF417 symbology, as it is very important that the
bars and spaces be of uniform width. For this reason, the Silver Bay Software PDF417 encoder
uses fixed size fonts.

At least two fonts have been provided for each supported printer type; a “normal” font and a
“large” font. The normal font is the one you will most commonly use. It generates a PDF417
symbol that is closest to the AIM specification’s recommended size.

The large font is provided for situations where the symbol may be susceptible to damage and
maximum readability is required. The downside to using the larger font is that it increases the
size of the symbol significantly (by 33% or 50%, depending on your printer density).

9.2 The Character Set

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 71 -

Each font character, or code point, in the PDF417 font, represents four modules of a PDF417
symbol. The characters used are diagrammed below (not to scale):

“SPACE” “A” “B” “C”

“D” “E” “F” “G”

“H” “I” “J” “K”

“L” “M” “N” “O”

The outlines in the above diagrams indicate the module positions. Only sixteen code points are
defined in the default font – all other code points are unused.

The actual character output of the encoder looks something like this (this the partial output from
the sample COBOL program):

 OOEDGEALCJBNALBHNIC LFB KCJILAOMADH
 OOEDGMDCCBOKINOGJKLDOGDF KOEAMOMADH
 OOEDFJGLCCHEMKHILLOJHGICLKE OIOMADH
 OOEDGMBOK ECAIJA OCBNDE HBKNOIOMADH
 OOEDGELAKDNAAMF DLCGJGMAFCJNAIOMADH
 OOEDGJOBCFENAIHENKHHLGNDFKJOIAOMADH
 OOEDECMNBB IA LLDNNLLGMJOBILNAOMADH
 OOEDGJDHCMADALKIHNOGMGHFLKNIFAOMADH
 OOEDECCNCMCMADDANLNDGENLLCODNMOMADH
 OOEDFHNGJAIJAHFJ LJF E FCBHLAIOMADH
 OOEDGDNAKACJACGM ODHDFBGBCJGAIOMADH
 OOEDEA OBHBOACHHFIHDNGCNIJHLOIOMADH

As a simple example, consider just the first few characters of the first line:
 OOEDGEA

When printed using the PDF417 font, the following pattern would actually be printed (without
the grey lines of course:

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 72 -

If we extend our example to include the first six characters of the second line of output, the
resulting output (of both lines) would look like this:

You’ve probably noticed that every line starts with the same four characters (OOED) and also
ends with the same four characters (MADH). These represent the start and stop patterns of the
PDF417 symbol. Since the start and stop pattern are the same for every row in the symbol, it
makes sense that the same characters would appear in every line of the output stream.

9.3 Module Size
Remember that a module is defined as the smallest black or white rectangular unit used to make
up a symbol. We have designed our font such that each character in the font represents four
adjacent modules. Furthermore, the height of each character is equivalent to the height of a
module.

The AIM specification for PDF417 recommends that the height of each row of modules in a
PDF417 symbol be three times the module width. For example, if a module width of 10 mil
(10/1000ths of an inch) is being used, then the module height should be 30 mil.

For 300 dot per inch printers, a font has been provided which uses a module width of 3 printer
pixels and a module height of 9 printer pixels. This is exactly 10 mil by 30 mil (3/300 = 0.01
and 9/300 = 0.03), and thus very nicely satisfies the AIM recommendations.

However, for 240 dot per inch printers (many IBM AFP printers), it is not possible to generate a
10 mil PDF417 symbol (as each module would need to be 2.4 pixels wide). Thus, a font has
been provided which uses a module width of 2 printer pixels and a module height of 6 printer
pixels. This gives us a PDF417 symbol whose modules are 8.3 mil by 25 mil.

These dimensions are close enough to the AIM recommendations of 10 mil and 30 mil that
virtually all PDF417 scanning devices will have no difficulty in reading these symbols.

9.4 Font Metrics
Silver Bay Software provides PDF417 fonts for HP PCL printers, Xerox printers, and AFP
printers. Each set of fonts has different naming conventions as well as different characteristics.
However, a common convention has been used for the suffix of each font.

The last 3 digits of any font’s name indicates the module width and height in pixels. This is
formatted as whh where w is the width and hh is the height. For example, the PCL font
HPP3309 uses a module width of 3 pixels and a module height of 9 pixels.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 73 -

9.4.1 AFP Fonts
Four fonts have been provided for AFP printers; two for 240 DPI printers and two for 300 DPI
printers. Note that the 300 DPI fonts are used on 600 and 1200 DPI printers as well. The fonts
are PD2206 and PD2309 for 240 DPI printers and PD3309 and PD3412 for 300 DPI printers.

The naming convention is PDdwhh where d is the printer density (2 for 240 DPI or 3 for 300
DPI), w is the module width in pixels, and hh is the module height in pixels. The actual
filenames of the AFP resources are as follows:

Filename Description

X0PD2206 240 DPI Coded Font (normal)

C0PD2206 240 DPI Character Set (normal)

X0PD2309 240 DPI Coded Font (large)

C0PD2309 240 DPI Character Set (large)

X0PD3309 300 DPI Coded Font (normal)

C0PD3309 300 DPI Character Set (normal)

X0PD3412 300 DPI Coded Font (large)

C0PD3412 300 DPI Character Set (large)

T1PDF417 Code Page (for both 240 and 300)

The following table lists line spacing information for each font:

 Line Height

Font Name Lines Per Inch Pixels Inches

PD2206 40.00 6 0.0250

PD2309 26.66 9 0.0375

PD3309 33.33 9 0.0300

PD3412 25.00 12 0.0400

The line spacing method you will use depends on your application program and your
programming environment. For example, PELS or lines per inch are normally used in
PAGEDEFs while AS/400 programmers using a DDS must position each line independently
(and thus will use the information in the Inches column).

9.4.2 HP PCL Fonts
Four fonts have been provided for HP PCL printers. Since PCL soft fonts (downloadable) can
only be 300 DPI, the same font is used on 300, 600, and 1200 dot per inch PCL printers. Both
portrait and landscape fonts are included.

The naming convention is HPPodwhh where o is the font orientation (P for portrait or L for
landscape), d is the printer density (always 3 for 300 DPI), w is the module width in pixels, and
hh is the module height in pixels. The actual filenames of the HP soft fonts are as follows:

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 74 -

The actual filenames are as follows:

Filename Description

HPPP3309 Portrait Font (normal)

HPPL3309 Landscape Font (normal)

HPPP3412 Portrait Font (large)

HPPL3412 Landscape Font (large)

The PDF417 PCL fonts HPP3309/HPPL3309 and HPP3412/HPL3412 print at 40 and 25 lines
per inch respectively. However, PCL does not allow line spacing of these values to be set.
Rather, PCL programmers must use a Vertical Motion Index; that is, for each line of the PDF417
printed the application program must position the printer’s cursor to the correct vertical (and
horizontal position). Vertical (and horizontal) positioning can be specified in either pixels or
decipoints (720ths of an inch). The following tables lists the appropriate vertical motion
information for each of the fonts:

Font Name Pixels Decipoints

HPPP3309 9 21.6

HPPL3309 9 21.6

HPPP3412 12 28.8

HPPL3412 12 28.8

Whether you choose to use pixel positioning (dots) or decipoint positioning is your choice.
However, realize decipoint positioning has the advantage that it is printer resolution independent,
thus the same PCL will work for 300, 600, and 1200 DPI printers.

9.4.3 Xerox Fonts
Twelve fonts have been provided for Xerox printers, however only six of them are valid for any
given printer model. The Xerox font disk you received will contain both 9700 series and 5-word
fonts. Choose and install only the appropriate fonts for your printer model.

The naming convention for these fonts is Xfowhh where f is the font series (9 for 9700 or 5 for
5-word), o is the font orientation (P for portrait or L for landscape), w is the module width in
pixels, and hh is the module height in pixels. The actual filenames of the HP soft fonts are as
follows:

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 75 -

The actual filenames are as follows:

Filename Description

X5P309 5-Word Portrait Font (normal)

X5L309 5-Word Landscape Font (normal)

X5P310 5-Word Portrait Font (normal)

X5L310 5-Word Landscape Font (normal)

X5P412 5-Word Portrait Font (large)

X5L412 5-Word Landscape Font (large)

X9P309 9700 Portrait Font (normal)

X9L309 9700 Landscape Font (normal)

X9P310 9700 Portrait Font (normal)

X9L310 9700 Landscape Font (normal)

X9P412 9700 Portrait Font (large)

X9L412 9700 Landscape Font (large)

Due to the limitations of line spacing on Xerox printers, line spacing cannot be specified for the
X5P309, X5L309, X9P309, and X9L309 fonts (as they require line spacing of 33.33 lines per
inch). If you use these fonts, do not specify a line spacing value in the JSL.

The following table lists the line spacing using with the various Xerox fonts:

Font Name Lines Per Inch Inches

X5P309 33.33 0.0300

X5L309 33.33 0.0300

X5P310 30.00 0.0333

X5L310 30.00 0.0333

X5P412 25.00 0.0400

X5L412 25.00 0.0400

X9P309 33.33 0.0300

X9L309 33.33 0.0300

X9P310 30.00 0.0333

X9L310 30.00 0.0333

X9P412 25.00 0.0400

X9L412 25.00 0.0400

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 76 -

9.5 IBM Advanced Functional Printing (AFP)
Using AFP, font selection and line-to-line spacing is usually controlled from within the Page
Definition (PAGEDEF) file. The following is a fragment from a sample PAGEDEF file for a 240
DPI printer. The sample assumes that:

• The PDF417 font being used is the 206 font and has been assigned a logical font name of
“PD2206”.

• The symbol is to be positioned 3.75” (900 pels) from the left edge of the page and 5”
(1200 pels) from the top of the page.

• The PDF417 output has been directed to channel 2 by the application program.
 SETUNITS 1 PELS 1 PELS LINESP 6 PELS;
 PRINTLINE REPEAT 37
 POSITION 900 1200
 FONT PD2206
 CHANNEL 2;

Using the 2309 font would require a different vertical line spacing and a different font:
 SETUNITS 1 PELS 1 PELS LINESP 9 PELS;
 PRINTLINE REPEAT 37
 POSITION 900 1200
 FONT PD2309
 CHANNEL 2;

9.6 Xerox Metacode/JSL
When printing a PDF417 symbol using a Xerox printer, the PDF417 font must be installed on the
printer. Transferring this font to your specific Xerox printer is beyond the scope of this
document.

To print the symbol using Metacode commands, each line must be positioned as it is printed.
Each of the lines of output must be printed by sending the vertical position, horizontal position,
font selection, the characters comprising the line, and the terminate command. The line spacing
depends on the font used; the 309 font uses a line spacing of 9 pixels, the 310 font uses 10 pixels,
whereas the 412 uses 12 pixels.

Note that when using JSL it is not strictly necessary to include line spacing information.
Furthermore, line spacing cannot be specified for the 309 font, as it is printing at 33.33 lines per
inch (JSL only allows line spacing up to 30.00 lines per inch). By not specifying lines per inch
in the JSL, the printer will use the correct line spacing information from the font itself.

9.7 Hewlett-Packard Printer Control Language (HP-PCL)
Using HP-PCL, the programmer must either install the PDF417 font(s) directly on the printer, or
download the PDF417 soft font to the printer as part of the print job. The programmer must also
invoke the font at the proper time. Installation of a font on a printer is beyond the scope of this
document.

Downloaded soft font selection is most conveniently done by assigning the downloaded font a
Font ID number, using the escape sequence EC*c#D (where # is the Font ID number), and then
invoking the font using that number. Selecting the font may either be done by making it the

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 77 -

primary font, using the escape sequence EC(#X, or by making it the secondary font using the
escape sequence EC)#X and then invoking the font with the SO character. The latter approach has
the advantage that the printer can be returned to the previous primary font using the SI character.

The following code fragment illustrates downloading the font as a soft font. This fragment would
be typical of a UNIX system directly connected to a HP-PCL printer such as a Hewlett-Packard
LaserJet™ family printer.

printf("\033*c%dD", PDF_FONT_ID); /* specify the soft font ID */
fp = fopen(fontFile, "r");
for(;;)
{
 nChars = fread(buffer, 1, sizeof(buffer), fp);
 if (nChars == 0)
 break;
 fwrite(buffer, 1, nChars, stdout);
}
fclose(fp);
printf("\033)%dX", PDF_FONT_ID); /* set the font as secondary */

Using HP-PCL, the simplest way to ensure the proper vertical positioning is to send a cursor
positioning escape sequence before each line of output. HP-PCL provides three means of
specifying position on the page – row/column, pixels, and deci-points (1/720th of an inch). The
relevant escape sequences are as follows:

 Horizontal Position Vertical Position

Row/Column E
C&a#C E

C&a#R

Pixels (Dots) E
C&a#X E

C&a#Y

Deci-points E
C&a#H E

C&a#V

When used with the PDF417 encoder, the row/column positioning escape sequences will not, in
general, produce the desired result and so should be avoided (as they do not provide fine enough
control over the position).

To use pixel positioning, send both a horizontal and vertical escape sequence before each row.
Each successive line in the output should have the same horizontal position, but a vertical
position that is either 9 pixels (for the 309 font) or 12 pixels (for the 412 font) farther down the
page.

To use deci-point positioning, send both a horizontal and vertical escape sequences before each
row. Each successive line in the output should have the same horizontal position, but a vertical
position that is 21.6 decipoints farther down the page for the 309 font or 28.8 decipoints for the
412 font. Using the decipoint method has the advantage that the output is independent of the
printer resolution. The following code fragment shows an example of this approach.

This example prints the symbol 1 inch from the left edge of the page, and 2 inches from the top
of the page, assuming the use of the 412 font:

#define ASCII_SI 15 /* select primary font */
#define ASCII_SO 14 /* select secondary font */
double hPos = 720.0; /* 1 inch */
double vPos = 1440.0/ ;* 2 inches */
int row, col;
struct sPdf417Output outputData;
. . .

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 78 -

/* do the encode here */
. . .
putchar(ASCII_SO); /* invoke secondary (PDF417) font */
for (row = 0; row < pdfNumRows; row++)
{
 printf("\033&a%.1lfH", hPos); /* horizontal pos */
 printf("\033&a%.1lfV", vPos + row * 28.8); /* vertical pos */
 for (col = 0; col < pdfNumCols; col++)
 {
 putchar(outputData.output[row][col]);
 }
}
putchar(ASCII_SI); /* return to primary font */

9.8 AS/400 DDS
As mentioned at the beginning of this section, the line spacing you will use is based on which
font you select. Most DDS users are accustomed to setting line spacing using the LPI function.
However, LPI cannot set “custom” line per inch settings (it can only set 4, 6, 8, 9, and 12 lines
per inch). A PDF-417 symbol, even using the largest font, requires much finer line spacing.

The solution then is to use explicit POSITION calls for each line of output. The DDS must place
each line of output at its precise location on the page. The table for AFP fonts provided earlier in
this section lists the necessary line spacing (in thousandths of an inch). The following is a
sample for a 300 DPI printer using the X0PD3309 font. Note that this font uses a line spacing of
0.0300 inches:

 A CDEFNT(X0PD3309)
 A PDFOUT01 37A POSITION(1.700 1.350)
 A PDFOUT02 37A POSITION(1.730 1.350)
 A PDFOUT03 37A POSITION(1.760 1.350)
 A PDFOUT04 37A POSITION(1.790 1.350)
 A PDFOUT05 37A POSITION(1.820 1.350)
 A PDFOUT06 37A POSITION(1.850 1.350)
 A PDFOUT07 37A POSITION(1.880 1.350)
 A PDFOUT08 37A POSITION(1.910 1.350)
 A PDFOUT09 37A POSITION(1.940 1.350)
 A PDFOUT10 37A POSITION(1.970 1.350)
 A PDFOUT11 37A POSITION(2.000 1.350)
 A PDFOUT12 37A POSITION(2.030 1.350)
 A PDFOUT13 37A POSITION(2.060 1.350)
 A PDFOUT14 37A POSITION(2.090 1.350)
 A PDFOUT15 37A POSITION(2.120 1.350)
 A PDFOUT16 37A POSITION(2.150 1.350)
 A PDFOUT17 37A POSITION(2.180 1.350)
 A PDFOUT18 37A POSITION(2.210 1.350)
 A PDFOUT19 37A POSITION(2.240 1.350)
 A PDFOUT20 37A POSITION(2.270 1.350)
 A PDFOUT21 37A POSITION(2.300 1.350)
 A PDFOUT22 37A POSITION(2.330 1.350)
 A PDFOUT23 37A POSITION(2.360 1.350)
 A PDFOUT24 37A POSITION(2.390 1.350)
 A PDFOUT25 37A POSITION(2.420 1.350)

This DDS prints a symbol 1.70 inches down and 1.35 inches over on the page. Each of the
successive 25 lines of output is 0.030 inches lower than the previous one (as each row of the
PDF-417 symbol is 0.03 inches high).

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 79 -

10 Appendix

10.1 API Return Values
The function return value for all of the APIs is an enumerated type, PDFERROR (defined in
pdfdefs.h - this file is automatically included by pdfenc.h). The table on the next page
lists the error values defined for PDFERROR:

COBOL Value C enum Value Meaning

0 PERR_OK Success.

1 PERR_INV_PARAM An invalid parameter was passed. This typically indicates that a
NULL pointer was passed to the encoder.

2 PERR_NO_MEMORY Not enough memory allocated.

3 PERR_TOO_LONG The data passed will not fit in a single PDF417 symbol.

4 PERR_INV_CODEWORD Invalid codeword, outside of valid range (0 - 899).

5 PERR_INV_SYM_LENGTH Invalid symbol length descriptor.

6 PERR_INV_CTRLBLCK Invalid Macro PDF control block.

7 PERR_INV_SEGIDX Invalid Segment Index, outside of valid range (0 - 99998).

8 PERR_INV_FILEID Invalid file ID codeword (0 - 899).

9 PERR_INV_FLDDES Invalid field designator, outside of valid range (0 - 6).

10 PERR_INV_EMPTYFLD Invalid optional field, found empty optional field.

11 PERR_INV_SHIFT_LATCH Invalid sub-mode shift or latch.

12 PERR_INV_NC_GRPING Invalid grouping embedded ECI within Numeric Compaction.

13 PERR_INV_BC_GRPING Invalid grouping embedded ECI within Binary Compaction.

14 PERR_INV_ECESEQ Invalid escape sequence in data.

15 PERR_INV_GLISEQ Invalid GLI sequence in data.

16 PERR_INV_ECISEQ Invalid ECI sequence in data.

17 PERR_INV_VERSION Invalid or unsupported input structure version.

18 PERR_INV_SYMBOL Invalid symbol.

19 PERR_INV_ROWS Invalid number of rows, outside of valid range (3 - 90).

20 PERR_INV_COLS Invalid number of columns, outside of valid range (1 - 30).

21 PERR_INV_ECCLEVEL Invalid error correction level, outside valid range (0 - 9).

22 PERR_INV_ECCTYPE Invalid ECC type choice (default, level, percent).

23 PERR_INV_ECCPERCENT Invalid error correction percent, outside valid range (1-100).

24 PERR_INV_ECCVALUE Invalid error correction value, outside of valid range for ECC
type.

25 PERR_EXCEED_ECCLIMIT Have exceeded the limit of the maximum ECC level.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 80 -

COBOL Value C enum Value Meaning

26 PERR_INV_PDFTYPE Invalid PDF417 symbol type.

27 PERR_INV_SYM_MATRIX Invalid symbol matrix (check row or column values).

28 PERR_INV_RENDER Invalid render info. Structure.

29 PERR_INV_SCANLINE Invalid scanline, outside of valid scanline range.

30 PERR_SINK_FAILED Data sink failure.

31 PERR_INV_BUFFINFO Invalid buffer info. structure.

32 PERR_NO_DATA No data codewords were found.

33 PERR_INV_PADFLAG Invalid setting for pad ECC flag (TRUE or FALSE).

34 PERR_INV_DATAFORMAT Invalid data format flag.

35 PERR_INV_ASPECT_RATIO Invalid aspect ratio value.

36 PERR_INV_AR_MODHEIGHT Invalid module height in aspect ratio.

37 PERR_INV_AR_MODWIDTH Invalid module width in aspect ratio.

38 PERR_INV_AR_SYMHEIGHT Invalid symbol height in aspect ratio.

39 PERR_INV_AR_SYMWIDTH Invalid symbol width in aspect ratio.

40 PERR_INV_NUMBYTES Invalid number of bytes parameter.

41 PERR_INV_USER_WRKAREA Invalid user work area.

42 PERR_INV_OPT_WORKAREA Invalid optimal encode work area.

43 PERR_INV_CODESET Invalid code set value.

44 PERR_BUFFER_TOO_SMALL Output render buffer too small.

45 PERR_INV_SHAVEWIDTH Invalid render information – shave width

46 PERR_INV_SHAVEHEIGHT Invalid render information – shave height

47 PERR_INV_CHARNUM Invalid character number value (0 - 9)

48 PERR_INV_DESTBUFF Invalid receiver for rendering a single line

49 PERR_INV_ENCMETHOD Invalid encoding method value

50 PERR_INV_H_ALIGNMENT Invalid horizontal alignment parameter for font rendering

51 PERR_INV_V_ALIGNMENT Invalid vertical alignment parameter for font rendering

52 PERR_INV_CONVERTFLAG Invalid EBCDIC to ASCII conversion flag value

53 PERR_MISMATCH_ECCTYPE Mismatch of ECC_TYPE and ECC_VALUE (expect 0 and 0)

In addition to these values, a number of "internal" error codes are defined. All these errors have a
value of 100 or greater. Should you encounter an internal error code, please note the code and
contact Silver Bay Software technical support.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 81 -

10.2 Symbology Technical Summary
PDF417 has the following basic characteristics:

1. Encodable character set:

a. Text Compaction mode permits all printable ASCII characters to be encoded, i.e.
values 32 – 126 inclusive in accordance with ISO 646, as well as selected control
characters.

b. Byte Compaction mode permits all 256 possible 8-bit byte values to be encoded. This
includes all ASCII characters value 0 – 127 inclusive and provides for international
character set support.

c. Numeric Compaction mode permits efficient encoding of long numeric data digit
strings.

d. Up to 811,800 different character sets or data interpretations.

e. Various function codewords for control purposes.

2. Each codeword is represented as a PDF417 character. The character structure is: n, k, m
symbology of 17 modules (n), 4 bar elements (k), with the largest element 6 modules
wide (m).

3. Maximum number of data characters per symbol (at error correction level 0) 925 data
codewords which can encode:

a. Text Compaction mode: 1850 characters (at 2 data characters per codeword).

b. Byte Compaction mode: 1109 characters (at 1.2 data characters per codeword).

c. Numeric Compaction mode: 2710 characters (at 2.93 data characters per codeword).

4. Symbol Size:

a. Number of rows: 3 to 90.

b. Number of columns: 1 to 30.

c. Width in modules: 90X to 583X including quiet zones.

d. Maximum codeword capacity: 928 codewords.

e. Maximum data codeword capacity: 925 codewords (other three are length descriptor
and error detection codewords).

f. Since the number of rows and columns are selectable, the aspect ratio of a PDF417
symbol may be varied when printing to suit the spatial requirements of the
application.

5. Error detection: 2 codewords per symbol.

a. Selectable error correction: 2 to 512 codewords per symbol.

6. Non-data overhead:

a. Per row: 73 modules, including quiet zones.

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 82 -

b. Per symbol: 3 additional codewords, represented as symbol characters (the length
descriptor and the error correction detection codewords).

7. Code type: Continuous, multi-row two-dimensional.

8. Character self-checking: Yes.

9. Bi-directionally decodeable: Yes.

The following summary is of additional features that are inherent or optional in PDF417:

1. Data Compaction (inherent): These schemes are defined to compact a number of data
characters into codewords. Generally data is not directly represented on a one character
for one codeword basis.

2. Extended Channel Interpretations (optional): These mechanisms allow up to 811,800
different character sets or interpretations to be encoded.

3. Macro PDF417 (optional): This mechanism allows files of data to be represented
logically and consecutively in a number of PDF417 symbols. Up to 99,999 different
PDF417 symbols can be linked or concatenated and be scanned in any sequence to enable
the original data files to be correctly reconstructed.

4. Edge to edge decodable (inherent): As an n (modules) or k (bar elements) symbology,
PDF417 can be decoded by measuring elements from edge to similar edge.

5. Partial scan 'stitching' (inherent): The combination of three characteristics in PDF417:

a. being synchronized horizontally, or self clocking.

b. row identification.

c. being vertically synchronized, by using cluster values to achieve local row
discrimination allows a single linear scan to cross a number of rows and achieve a
partial decode of the data so long as at least one complete symbol character per row is
decoded into its codeword value. The decoding algorithm can then 'stitch' the
individual codewords into a meaningful matrix.

6. Error correction (inherent): A user may define one of 9 error correction levels. All but
Level 0 not only detect errors but also can correct erroneously decoded or missing
codewords.

Compact PDF417 (optional): In relatively 'clean' environments, it is possible to reduce some of
the row overhead to improve the symbol density.

NOTE: In earlier versions of PDF417, this was called Truncated PDF417. Compact
PDF417 is the preferred term to avoid confusion with the more general use of the
term 'truncated'.

10.3 Font Initialization Values
The following tables list the supported printer platforms and the code points to use with the
encoder’s font initialization function. Refer to the PdfFontInitRender (for C
programming) or PDFINITF (for COBOL programming) section for more information on font
initialization. Failure to have the proper code points in the program can cause unpredictable

Silver Bay Software LLC PDF417 Encoder Programmer’s Manual

- 83 -

output and can even cause printer reboots. The default font character set, using the provided
printer fonts, should work for most print environments.

The information has been broken into two tables; one for UNIX and PC Platforms (ASCII
platforms) and a second for IBM S/370 and AS/400 systems (EBCDIC platforms).

The code point values are provided in hexadecimal and are listed in the order required by the
initialization function (SPACE, CHAR1 through CHAR15).

UNIX and PC Platform

Printer Family Code Points (in HEX)

IBM AFP 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 4F

Xerox DJDE 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 4F

Xerox MetaCode 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 4F

HP PCL 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 4F

IBM S/370, S/390

Printer Family Code Points (in HEX)

IBM AFP 40, C1, C2, C3, C4, C5, C6, C7, C8, C9, D1, D2, D3, D4, D5, D6

Xerox DJDE 40, C1, C2, C3, C4, C5, C6, C7, C8, C9, D1, D2, D3, D4, D5, D6

Xerox MetaCode 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 4F

HP PCL 40, C1, C2, C3, C4, C5, C6, C7, C8, C9, D1, D2, D3, D4, D5, D6

	1 Introduction
	1.1 Contents of this Manual
	1.2 Basic Features of the Encoder

	2 PDF417 Symbology Overview
	2.1 Anatomy of a PDF417 Symbol
	2.1.1 Symbol Rows
	2.1.2 Modules
	2.1.3 Codewords
	2.1.4 Start Pattern, Stop Pattern and Row Indicators

	2.2 PDF417 Symbol Size
	2.2.1 Calculating the Size of a Particular Symbol
	2.2.2 Determining Symbol Size from a Given Area
	2.2.3 Module Size

	2.3 Error Correction
	2.4 Truncated or Compact PDF417
	2.5 Character Set Issues

	3 Controlling the Generation of a PDF417 Symbol
	3.1 Controlling the Internal Encoding Method
	3.1.1 Binary Mode
	3.1.2 Optimized Mode

	3.2 Controlling PDF Symbol Size
	3.2.1 Module Size - Font Rendering
	3.2.2 Module Size - Graphics Rendering
	3.2.3 Quiet Zones
	3.2.4 Row and Column Control
	3.2.5 Aspect Ratio Control
	3.2.6 Error Correction Parameters

	3.3 Input Data Format
	3.4 Default Parameters

	4 Using the PDF417 Encoder with the C Language
	4.1 Encoder Operation
	4.1.1 Encoder Input and Output
	4.1.2 Font Rendering
	4.1.3 Overview of the Encode Process

	4.2 Allocating Working Memory
	4.3 Initialize Working Memory
	4.4 Set Encoder Parameters
	4.5 Encoding Data
	4.6 Error Correction and Retrieval of Symbol Data
	4.7 Rendering the Symbol
	4.8 Printing the Symbol
	4.9 Result Codes

	5 C Language API Functions
	5.1 Initialization Process
	5.1.1 PdfInit
	5.1.2 PdfClear:
	5.1.3 PdfGenParamSet:
	5.1.4 PdfGenParamGet:
	5.1.5 PdfAspectRatioSet:
	5.1.6 PdfAspectRatioGet:

	5.2 Encoding Process
	5.2.1 PdfEncodeOptimal
	5.2.2 PdfEncodeBinary:
	5.2.3 PdfRetrieveSymbol:

	5.3 Rendering Process
	5.4 Rendering Callback Routines
	5.4.1 Output Callback Functions
	5.4.2 PdfSinkMemory
	5.4.3 PdfSinkStream
	5.4.4 PdfSinkFd

	5.5 Device-Independent Bitmap Rendering Routines
	5.5.1 PdfDIBQuery
	5.5.2 PdfDIBRender:

	5.6 Tagged Image File Format (TIFF) Rendering Routines
	5.6.1 PdfTIFFQuery:
	5.6.2 PdfTIFFRender:

	5.7 Font Based Rendering Routines
	5.7.1 PdfFontInitRender
	5.7.2 PdfFontRender:

	5.8 EBCDIC-to-ASCII and Utility Routines
	5.8.1 PdfEtoA
	5.8.2 PdfSet

	6 COBOL Language API
	6.1.1 Overview of the Encode Process
	6.1.2 Font Information Initialization
	6.1.3 Encoder Parameters Initialization
	6.1.4 COBOL Output record Initialization
	6.1.5 Encoding Data
	6.1.6 Printing the Symbol
	6.1.7 Result Codes

	7 COBOL Language API Functions
	7.1.1 PDFINITF
	7.1.2 PDFENCOD

	8 Using the PDF417 Encoder with Other Languages
	8.1 RPG
	8.2 Other Languages

	9 Font and Printing-Related Information
	9.1 PDF417 Font Basics
	9.2 The Character Set
	9.3 Module Size
	9.4 Font Metrics
	9.4.1 AFP Fonts
	9.4.2 HP PCL Fonts
	9.4.3 Xerox Fonts

	9.5 IBM Advanced Functional Printing (AFP)
	9.6 Xerox Metacode/JSL
	9.7 Hewlett-Packard Printer Control Language (HP-PCL)
	9.8 AS/400 DDS

	10 Appendix
	10.1 API Return Values
	10.2 Symbology Technical Summary
	10.3 Font Initialization Values

